1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
//! Merkelized map and associated proof

use anyhow::{anyhow, Context};
use serde::{Deserialize, Serialize};
use std::{
    collections::{BTreeMap, BTreeSet, HashMap},
    hash::Hash,
    sync::Arc,
};

use crate::{resource_pool::Reset, StdError, StdResult};

use super::{MKProof, MKTree, MKTreeNode, MKTreeStorer};

/// The trait implemented by the keys of a MKMap
pub trait MKMapKey: PartialEq + Eq + PartialOrd + Ord + Clone + Hash + Into<MKTreeNode> {}

/// The trait implemented by the values of a MKMap
pub trait MKMapValue<K: MKMapKey>: Clone + TryInto<MKTreeNode> + TryFrom<MKTreeNode> {
    /// Get the root of the merkelized map value
    fn compute_root(&self) -> StdResult<MKTreeNode>;

    /// Check if the merkelized map value contains a leaf
    fn contains<T: Into<MKTreeNode> + Clone>(&self, leaf: &T) -> bool;

    /// Can the merkelized map value compute a proof
    fn can_compute_proof(&self) -> bool;

    /// Compute the proof for a set of values of the merkelized map
    fn compute_proof<T: Into<MKTreeNode> + Clone>(
        &self,
        leaves: &[T],
    ) -> StdResult<Option<MKMapProof<K>>>;
}

/// A map, where the keys and values are merkelized and provable
pub struct MKMap<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> {
    inner_map_values: BTreeMap<K, V>,
    inner_merkle_tree: MKTree<S>,
    provable_keys: BTreeSet<K>,
}

impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> MKMap<K, V, S> {
    /// MKMap factory
    pub fn new(entries: &[(K, V)]) -> StdResult<Self> {
        Self::new_from_iter(entries.to_vec())
    }

    /// MKMap factory
    pub fn new_from_iter<T: IntoIterator<Item = (K, V)>>(entries: T) -> StdResult<Self> {
        let inner_map_values = BTreeMap::default();
        let inner_merkle_tree = MKTree::<S>::new::<MKTreeNode>(&[])?;
        let can_compute_proof_keys = BTreeSet::default();
        let mut mk_map = Self {
            inner_map_values,
            inner_merkle_tree,
            provable_keys: can_compute_proof_keys,
        };
        let sorted_entries = BTreeMap::from_iter(entries);
        for (key, value) in sorted_entries {
            mk_map.insert_unchecked(key, value)?;
        }

        Ok(mk_map)
    }

    /// Insert a new key-value pair
    /// Important: keys must be inserted in order to guarantee
    /// that the same set of key/values results in the same computation for the root.
    pub fn insert(&mut self, key: K, value: V) -> StdResult<()> {
        if let Some(existing_value) = self.inner_map_values.get(&key) {
            if existing_value.compute_root()? != value.compute_root()? {
                return Err(anyhow!(
                    "MKMap values should be replaced by entry with same root"
                ));
            }
            return self.replace_unchecked(key, value);
        } else {
            let key_max = self.inner_map_values.keys().max();
            if key_max > Some(&key) {
                return Err(anyhow!("MKMap keys must be inserted in order"));
            }
        }

        self.insert_unchecked(key, value)
    }

    /// Insert a new key-value pair without checking if the key is already present nor the order of insertion.
    fn insert_unchecked(&mut self, key: K, value: V) -> StdResult<()> {
        self.update_provable_keys(&key, &value)?;
        self.inner_map_values.insert(key.clone(), value.clone());
        let mktree_node_value = value
            .try_into()
            .map_err(|_| anyhow!("MKMap could not convert value to NKTreeNode"))
            .with_context(|| "MKMap could not convert insert value")?;
        let mktree_node_key: MKTreeNode = key.into();
        self.inner_merkle_tree
            .append(&[mktree_node_key + mktree_node_value])?;

        Ok(())
    }

    /// Replace the value of an existing key
    pub fn replace(&mut self, key: K, value: V) -> StdResult<()> {
        match self.inner_map_values.get(&key) {
            Some(existing_value) if existing_value.compute_root()? != value.compute_root()? => Err(
                anyhow!("MKMap values should be replaced by entry with same root"),
            ),
            Some(_) => self.replace_unchecked(key, value),
            None => Err(anyhow!("MKMap could not replace non-existing key")),
        }
    }

    /// Replace the value of an existing key without checking if the key is already present
    fn replace_unchecked(&mut self, key: K, value: V) -> StdResult<()> {
        self.update_provable_keys(&key, &value)?;
        self.inner_map_values.insert(key.clone(), value.clone());

        Ok(())
    }

    /// Keep track of the keys that can compute a proof
    fn update_provable_keys(&mut self, key: &K, value: &V) -> StdResult<()> {
        if value.can_compute_proof() {
            self.provable_keys.insert(key.clone());
        } else if self.provable_keys.contains(key) {
            self.provable_keys.remove(key);
        }

        Ok(())
    }

    #[cfg(test)]
    /// Get the provable keys of the merkelized map
    pub fn get_provable_keys(&self) -> &BTreeSet<K> {
        &self.provable_keys
    }

    /// Check if the merkelized map contains a leaf (and returns the corresponding key and value if exists)
    pub fn contains(&self, leaf: &MKTreeNode) -> Option<(&K, &V)> {
        self.iter().find(|(_, v)| v.contains(leaf))
    }

    /// Get the value of the merkelized map for a given key
    pub fn get(&self, key: &K) -> Option<&V> {
        self.inner_map_values.get(key)
    }

    /// Get an iterator for the key and values of the merkelized map
    pub fn iter(&self) -> impl Iterator<Item = (&K, &V)> {
        self.inner_map_values.iter()
    }

    /// Get the length of the merkelized map
    pub fn len(&self) -> usize {
        self.inner_map_values.len()
    }

    /// Check if the merkelized map is empty
    pub fn is_empty(&self) -> bool {
        self.inner_map_values.is_empty()
    }

    /// Compress the merkelized map
    pub fn compress(&mut self) -> StdResult<()> {
        let keys = self.provable_keys.clone();
        for key in keys {
            if let Some(value) = self.get(&key) {
                let value = value
                    .compute_root()?
                    .try_into()
                    .map_err(|_| anyhow!("Merkle root could not be converted to V"))?;
                self.replace_unchecked(key.to_owned(), value)?;
            }
        }

        Ok(())
    }

    /// Get the root of the merkle tree of the merkelized map
    pub fn compute_root(&self) -> StdResult<MKTreeNode> {
        self.inner_merkle_tree.compute_root()
    }

    /// Get the proof for a set of values of the merkelized map (recursively if needed)
    pub fn compute_proof<T: Into<MKTreeNode> + Clone>(
        &self,
        leaves: &[T],
    ) -> StdResult<MKMapProof<K>> {
        if leaves.is_empty() {
            return Err(anyhow!("MKMap could not compute proof for empty leaves"));
        }

        let leaves_by_keys = self.group_leaves_by_keys(leaves);
        let mut sub_proofs = BTreeMap::<K, MKMapProof<K>>::default();
        for (key, sub_leaves) in leaves_by_keys {
            if let Some(value) = self.get(&key) {
                if let Some(proof) = value.compute_proof(&sub_leaves)? {
                    sub_proofs.insert(key.to_owned(), proof);
                }
            }
        }

        let master_proof = self
            .inner_merkle_tree
            .compute_proof(
                &sub_proofs
                    .iter()
                    .map(|(k, p)| k.to_owned().into() + p.compute_root().to_owned())
                    .collect::<Vec<MKTreeNode>>(),
            )
            .with_context(|| "MKMap could not compute master proof")?;

        Ok(MKMapProof::new(master_proof, sub_proofs))
    }

    /// Returns a map with the leaves (converted to Merkle tree nodes) grouped by keys
    fn group_leaves_by_keys<T: Into<MKTreeNode> + Clone>(
        &self,
        leaves: &[T],
    ) -> HashMap<K, Vec<MKTreeNode>> {
        let can_compute_proof_map: HashMap<K, V> = self
            .provable_keys
            .iter()
            .filter_map(|k| self.get(k).map(|v| (k.to_owned(), v.to_owned())))
            .collect();
        let leaves_by_keys: HashMap<K, Vec<MKTreeNode>> = can_compute_proof_map
            .iter()
            .map(|(key, value)| {
                let leaves_found = leaves
                    .iter()
                    .filter_map(|leaf| value.contains(leaf).then_some(leaf.to_owned().into()))
                    .collect::<Vec<_>>();

                (key.to_owned(), leaves_found)
            })
            .fold(HashMap::default(), |mut acc, (key, leaves)| {
                leaves.into_iter().for_each(|leaf| {
                    acc.entry(key.to_owned()).or_default().push(leaf);
                });

                acc
            });

        leaves_by_keys
    }
}

impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> Reset for MKMap<K, V, S> {
    fn reset(&mut self) -> StdResult<()> {
        self.compress()
    }
}

impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> Clone for MKMap<K, V, S> {
    fn clone(&self) -> Self {
        // Cloning should never fail so unwrap is safe
        let mut clone = Self::new(&[]).unwrap();
        for (k, v) in self.inner_map_values.iter() {
            clone.insert(k.to_owned(), v.to_owned()).unwrap();
        }

        clone
    }
}

impl<'a, K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> From<&'a MKMap<K, V, S>>
    for &'a MKTree<S>
{
    fn from(other: &'a MKMap<K, V, S>) -> Self {
        &other.inner_merkle_tree
    }
}

impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> TryFrom<MKMap<K, V, S>> for MKTreeNode {
    type Error = StdError;
    fn try_from(other: MKMap<K, V, S>) -> Result<Self, Self::Error> {
        other.compute_root()
    }
}

/// A MKMapProof that proves membership of an entry in the merkelized map
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
pub struct MKMapProof<K: MKMapKey> {
    master_proof: MKProof,
    sub_proofs: Vec<(K, MKMapProof<K>)>,
}

impl<K: MKMapKey> MKMapProof<K> {
    /// MKMapProof factory
    pub fn new(master_proof: MKProof, sub_proofs: BTreeMap<K, MKMapProof<K>>) -> Self {
        let sub_proofs = sub_proofs.into_iter().collect();
        Self {
            master_proof,
            sub_proofs,
        }
    }

    /// Get the root of the merkelized map proof
    pub fn compute_root(&self) -> MKTreeNode {
        self.master_proof.root().to_owned()
    }

    /// Verify the merkelized map proof
    pub fn verify(&self) -> StdResult<()> {
        for (_key, proof) in &self.sub_proofs {
            proof
                .verify()
                .with_context(|| "MKMapProof could not verify sub proof")?;
        }

        self.master_proof
            .verify()
            .with_context(|| "MKMapProof could not verify master proof")?;
        if !self.sub_proofs.is_empty() {
            self.master_proof
                .contains(
                    &self
                        .sub_proofs
                        .iter()
                        .map(|(k, p)| k.to_owned().into() + p.compute_root().to_owned())
                        .collect::<Vec<_>>(),
                )
                .with_context(|| "MKMapProof could not match verified leaves of master proof")?;
        }

        Ok(())
    }

    /// Check if the merkelized map proof contains a leaf
    pub fn contains(&self, leaf: &MKTreeNode) -> StdResult<()> {
        let contains_leaf = {
            self.master_proof.contains(&[leaf.to_owned()]).is_ok()
                || self
                    .sub_proofs
                    .iter()
                    .any(|(_k, p)| p.contains(leaf).is_ok())
        };

        contains_leaf
            .then_some(())
            .ok_or(anyhow!("MKMapProof does not contain leaf {:?}", leaf))
    }

    /// List the leaves of the merkelized map proof
    pub fn leaves(&self) -> Vec<MKTreeNode> {
        if self.sub_proofs.is_empty() {
            self.master_proof.leaves()
        } else {
            let mut leaves = vec![];
            self.sub_proofs.iter().for_each(|(_k, p)| {
                leaves.extend(p.leaves());
            });

            leaves
        }
    }
}

impl<K: MKMapKey> From<MKProof> for MKMapProof<K> {
    fn from(other: MKProof) -> Self {
        MKMapProof::new(other, BTreeMap::default())
    }
}

/// A merkelized map node that is used to represent multi layered merkelized map
/// The MKMapNode can be either a MKMap (Merkle map), a MKTree (full Merkle tree) or a MKTreeNode (Merkle tree node, e.g the root of a Merkle tree)
/// Both MKMap and MKTree can generate proofs of membership for elements that they contain, which allows for recursive proof generation for the multiple layers
#[derive(Clone)]
pub enum MKMapNode<K: MKMapKey, S: MKTreeStorer> {
    /// A Merkle map
    Map(Arc<MKMap<K, Self, S>>),

    /// A full Merkle tree
    Tree(Arc<MKTree<S>>),

    /// A Merkle tree node
    TreeNode(MKTreeNode),
}

impl<K: MKMapKey, S: MKTreeStorer> MKMapValue<K> for MKMapNode<K, S> {
    fn compute_root(&self) -> StdResult<MKTreeNode> {
        match self {
            MKMapNode::Map(mk_map) => mk_map.compute_root(),
            MKMapNode::Tree(merkle_tree) => merkle_tree.compute_root(),
            MKMapNode::TreeNode(merkle_tree_node) => Ok(merkle_tree_node.to_owned()),
        }
    }

    fn contains<T: Into<MKTreeNode> + Clone>(&self, leaf: &T) -> bool {
        let leaf = leaf.to_owned().into();
        match self {
            MKMapNode::Map(mk_map) => mk_map.contains(&leaf).is_some(),
            MKMapNode::Tree(merkle_tree) => merkle_tree.contains(&leaf),
            MKMapNode::TreeNode(merkle_tree_node) => *merkle_tree_node == leaf,
        }
    }

    fn can_compute_proof(&self) -> bool {
        match self {
            MKMapNode::Map(_) => true,
            MKMapNode::Tree(_) => true,
            MKMapNode::TreeNode(_) => false,
        }
    }

    fn compute_proof<T: Into<MKTreeNode> + Clone>(
        &self,
        leaves: &[T],
    ) -> StdResult<Option<MKMapProof<K>>> {
        match self {
            MKMapNode::Tree(ref value) => {
                let proof = value
                    .compute_proof(
                        &leaves
                            .iter()
                            .map(|leaf| leaf.to_owned().into())
                            .collect::<Vec<_>>(),
                    )
                    .with_context(|| "MKMapValue could not compute sub proof for MKTree")?;
                Ok(Some(proof.into()))
            }
            MKMapNode::Map(ref value) => {
                let proof = value
                    .compute_proof(
                        &leaves
                            .iter()
                            .map(|leaf| leaf.to_owned().into())
                            .collect::<Vec<_>>(),
                    )
                    .with_context(|| "MKMapValue could not compute sub proof for MKMap")?;
                Ok(Some(proof))
            }
            _ => Ok(None),
        }
    }
}

impl<K: MKMapKey, S: MKTreeStorer> From<MKMap<K, MKMapNode<K, S>, S>> for MKMapNode<K, S> {
    fn from(other: MKMap<K, MKMapNode<K, S>, S>) -> Self {
        MKMapNode::Map(Arc::new(other))
    }
}

impl<K: MKMapKey, S: MKTreeStorer> From<MKTree<S>> for MKMapNode<K, S> {
    fn from(other: MKTree<S>) -> Self {
        MKMapNode::Tree(Arc::new(other))
    }
}

impl<K: MKMapKey, S: MKTreeStorer> From<MKTreeNode> for MKMapNode<K, S> {
    fn from(other: MKTreeNode) -> Self {
        MKMapNode::TreeNode(other)
    }
}

impl<K: MKMapKey, S: MKTreeStorer> TryFrom<MKMapNode<K, S>> for MKTreeNode {
    type Error = StdError;
    fn try_from(other: MKMapNode<K, S>) -> Result<Self, Self::Error> {
        other.compute_root()
    }
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeSet;

    use crate::{
        crypto_helper::MKTreeStoreInMemory,
        entities::{BlockNumber, BlockRange},
    };

    use super::*;

    fn generate_merkle_trees(
        total_leaves: u64,
        block_range_length: u64,
    ) -> Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)> {
        (0..total_leaves / block_range_length)
            .map(|block_range_index| {
                let block_range = BlockRange::from_block_number_and_length(
                    BlockNumber(block_range_index),
                    BlockNumber(block_range_length),
                )
                .unwrap();
                let merkle_tree_block_range = generate_merkle_tree(&block_range);
                (block_range, merkle_tree_block_range)
            })
            .collect::<Vec<_>>()
    }

    fn generate_merkle_tree(block_range: &BlockRange) -> MKTree<MKTreeStoreInMemory> {
        let leaves = (*block_range.start..*block_range.end)
            .map(|leaf_index| leaf_index.to_string())
            .collect::<Vec<_>>();
        MKTree::new(&leaves).unwrap()
    }

    fn generate_merkle_trees_for_ranges(
        block_ranges: &[BlockRange],
    ) -> Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)> {
        block_ranges
            .iter()
            .map(|block_range| (block_range.to_owned(), generate_merkle_tree(block_range)))
            .collect()
    }

    fn into_mkmap_tree_entries(
        entries: Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)>,
    ) -> Vec<(BlockRange, MKMapNode<BlockRange, MKTreeStoreInMemory>)> {
        entries
            .into_iter()
            .map(|(range, mktree)| (range, MKMapNode::Tree(Arc::new(mktree))))
            .collect()
    }

    fn into_mkmap_tree_node_entries(
        entries: Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)>,
    ) -> Vec<(BlockRange, MKMapNode<BlockRange, MKTreeStoreInMemory>)> {
        entries
            .into_iter()
            .map(|(range, mktree)| (range, MKMapNode::TreeNode(mktree.try_into().unwrap())))
            .collect()
    }

    #[test]
    fn test_mk_map_should_compute_same_root_when_replacing_entry_with_equivalent() {
        let entries = generate_merkle_trees(10, 3);
        let mk_map_nodes =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_node_entries(entries.clone()))
                .unwrap();
        let mk_map_full =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        let mk_map_nodes_root = mk_map_nodes.compute_root().unwrap();
        let mk_map_full_root = mk_map_full.compute_root().unwrap();

        assert_eq!(mk_map_full_root, mk_map_nodes_root);
    }

    #[test]
    fn test_mk_map_should_accept_replacement_with_same_root_value() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
        let mk_map_root_expected = mk_map.compute_root().unwrap();
        let block_range_replacement = BlockRange::new(0, 3);
        let same_root_value = MKMapNode::TreeNode(
            mk_map
                .get(&block_range_replacement)
                .unwrap()
                .compute_root()
                .unwrap(),
        );

        mk_map
            .insert(block_range_replacement, same_root_value)
            .unwrap();

        assert_eq!(mk_map_root_expected, mk_map.compute_root().unwrap())
    }

    #[test]
    fn test_mk_map_should_reject_replacement_with_different_root_value() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
        let block_range_replacement = BlockRange::new(0, 3);
        let value_replacement: MKTreeNode = "test-123".to_string().into();
        let different_root_value = MKMapNode::TreeNode(value_replacement);

        mk_map
            .insert(block_range_replacement, different_root_value)
            .expect_err("the MKMap should reject replacement with different root value");
    }

    #[test]
    fn test_mk_map_replace_should_accept_replacement_with_same_root_value() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
        let block_range_replacement = BlockRange::new(0, 3);
        let same_root_value = MKMapNode::TreeNode(
            mk_map
                .get(&block_range_replacement)
                .unwrap()
                .compute_root()
                .unwrap(),
        );
        let mk_map_root_expected = mk_map.compute_root().unwrap();

        assert!(matches!(
            mk_map.get(&block_range_replacement).unwrap(),
            MKMapNode::Tree(..)
        ));

        mk_map
            .replace(block_range_replacement.clone(), same_root_value)
            .unwrap();

        assert_eq!(mk_map_root_expected, mk_map.compute_root().unwrap());
        assert!(matches!(
            mk_map.get(&block_range_replacement).unwrap(),
            MKMapNode::TreeNode(..)
        ));
    }

    #[test]
    fn test_mk_map_replace_should_reject_replacement_if_key_doesnt_exist() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        let error = mk_map
            .replace(
                BlockRange::new(10, 12),
                MKMapNode::TreeNode("whatever".into()),
            )
            .expect_err("the MKMap should reject replacement for nonexisting key");

        assert!(
            error
                .to_string()
                .contains("MKMap could not replace non-existing key"),
            "Invalid error message: `{error}`",
        );
    }

    #[test]
    fn test_mk_map_replace_should_reject_replacement_with_different_root_value() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        let error = mk_map
            .replace(
                BlockRange::new(0, 3),
                MKMapNode::TreeNode("different_value".into()),
            )
            .expect_err("the MKMap should reject replacement with different root value");

        assert!(
            error
                .to_string()
                .contains("MKMap values should be replaced by entry with same root"),
            "Invalid error message: `{error}`",
        );
    }

    #[test]
    fn test_mk_map_should_compress_correctly() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
        let mk_map_root_expected = mk_map.compute_root().unwrap();
        let mk_map_provable_keys = mk_map.get_provable_keys();
        assert!(!mk_map_provable_keys.is_empty());

        let mut mk_map_compressed = mk_map.clone();
        mk_map_compressed.compress().unwrap();

        let mk_map_compressed_root = mk_map_compressed.compute_root().unwrap();
        let mk_map_compressed_provable_keys = mk_map_compressed.get_provable_keys();
        assert_eq!(mk_map_root_expected, mk_map_compressed_root);
        assert!(mk_map_compressed_provable_keys.is_empty());
    }

    #[test]
    fn test_mk_map_should_reject_out_of_order_insertion() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mut mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_node_entries(entries))
                .unwrap();
        let out_of_order_entry = (
            BlockRange::new(0, 25),
            MKMapNode::TreeNode("test-123".into()),
        );

        mk_map
            .insert(out_of_order_entry.0, out_of_order_entry.1)
            .expect_err("the MKMap should reject out of order insertion");
    }

    #[test]
    fn test_mk_map_should_list_keys_correctly() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let merkle_tree_entries = &into_mkmap_tree_node_entries(entries);
        let mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_entries.as_slice()).unwrap();

        let keys = mk_map
            .iter()
            .map(|(k, _v)| k.to_owned())
            .collect::<Vec<_>>();
        let expected_keys = merkle_tree_entries
            .iter()
            .map(|(k, _)| k)
            .cloned()
            .collect::<Vec<_>>();

        assert_eq!(expected_keys, keys);
    }

    #[test]
    fn test_mk_map_should_list_values_correctly() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let merkle_tree_entries = &into_mkmap_tree_node_entries(entries);
        let mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_entries.as_slice()).unwrap();

        let values = mk_map
            .iter()
            .map(|(_k, v)| v.to_owned())
            .collect::<Vec<_>>();
        let expected_values = merkle_tree_entries
            .iter()
            .map(|(_, v)| v)
            .cloned()
            .collect::<Vec<_>>();

        assert_eq!(
            BTreeSet::from_iter(expected_values.iter().map(|v| v.compute_root().unwrap())),
            BTreeSet::from_iter(values.iter().map(|v| v.compute_root().unwrap()))
        );
    }

    #[test]
    fn test_mk_map_should_find_value_correctly() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mktree_node_to_certify = entries[2].1.leaves()[1].clone();
        let mk_map_full =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        mk_map_full.contains(&mktree_node_to_certify).unwrap();
    }

    #[test]
    fn test_mk_map_should_clone_and_compute_same_root() {
        let entries = generate_merkle_trees_for_ranges(&[
            BlockRange::new(0, 3),
            BlockRange::new(4, 6),
            BlockRange::new(7, 9),
        ]);
        let mk_map =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        let mk_map_clone = mk_map.clone();

        assert_eq!(
            mk_map.compute_root().unwrap(),
            mk_map_clone.compute_root().unwrap(),
        );
    }

    #[test]
    fn test_mk_map_should_not_compute_proof_for_no_leaves() {
        let entries = generate_merkle_trees(10, 3);
        let mktree_nodes_to_certify: &[MKTreeNode] = &[];
        let mk_map_full =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();

        mk_map_full
            .compute_proof(mktree_nodes_to_certify)
            .expect_err("MKMap should not compute proof for no leaves");
    }

    #[test]
    fn test_mk_map_should_compute_and_verify_valid_proof() {
        let entries = generate_merkle_trees(10, 3);
        let mktree_nodes_to_certify = [
            entries[0].1.leaves()[0].clone(),
            entries[1].1.leaves()[0].clone(),
            entries[1].1.leaves()[1].clone(),
            entries[2].1.leaves()[1].clone(),
        ];
        let mk_map_full =
            MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
        let mk_map_proof = mk_map_full.compute_proof(&mktree_nodes_to_certify).unwrap();

        mk_map_proof.verify().unwrap();

        let map_proof_root = mk_map_proof.compute_root();
        let map_proof_root_expected = mk_map_full.compute_root().unwrap();
        assert_eq!(map_proof_root, map_proof_root_expected);

        let mk_proof_leaves = mk_map_proof.leaves();
        assert_eq!(mktree_nodes_to_certify.to_vec(), mk_proof_leaves);
    }

    #[test]
    fn test_mk_map_should_compute_and_verify_valid_proof_recursively() {
        let entries = generate_merkle_trees(100, 3);
        let mktree_nodes_to_certify = [
            entries[0].1.leaves()[0].clone(),
            entries[2].1.leaves()[1].clone(),
            entries[3].1.leaves()[2].clone(),
            entries[20].1.leaves()[0].clone(),
            entries[30].1.leaves()[0].clone(),
        ];
        let merkle_tree_node_entries = &into_mkmap_tree_entries(entries)
            .chunks(10)
            .map(|entries| {
                (
                    entries
                        .iter()
                        .fold(BlockRange::new(0, 0), |acc, (range, _)| {
                            acc.try_add(range).unwrap()
                        }),
                    MKMapNode::Map(Arc::new(MKMap::new(entries).unwrap())),
                )
            })
            .collect::<Vec<_>>();

        let mk_map_full =
            MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_node_entries.as_slice()).unwrap();

        let mk_map_proof = mk_map_full.compute_proof(&mktree_nodes_to_certify).unwrap();

        mk_map_proof.verify().unwrap();

        let map_proof_root = mk_map_proof.compute_root();
        let map_proof_root_expected = mk_map_full.compute_root().unwrap();
        assert_eq!(map_proof_root, map_proof_root_expected);
    }
}