1use anyhow::{anyhow, Context};
4use serde::{Deserialize, Serialize};
5use std::{
6 collections::{BTreeMap, BTreeSet, HashMap},
7 hash::Hash,
8 sync::Arc,
9};
10
11use crate::{StdError, StdResult};
12
13use super::{MKProof, MKTree, MKTreeNode, MKTreeStorer};
14
15pub trait MKMapKey: PartialEq + Eq + PartialOrd + Ord + Clone + Hash + Into<MKTreeNode> {}
17
18pub trait MKMapValue<K: MKMapKey>: Clone + TryInto<MKTreeNode> + TryFrom<MKTreeNode> {
20 fn compute_root(&self) -> StdResult<MKTreeNode>;
22
23 fn contains<T: Into<MKTreeNode> + Clone>(&self, leaf: &T) -> bool;
25
26 fn can_compute_proof(&self) -> bool;
28
29 fn compute_proof<T: Into<MKTreeNode> + Clone>(
31 &self,
32 leaves: &[T],
33 ) -> StdResult<Option<MKMapProof<K>>>;
34}
35
36pub struct MKMap<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> {
38 inner_map_values: BTreeMap<K, V>,
39 inner_merkle_tree: MKTree<S>,
40 provable_keys: BTreeSet<K>,
41}
42
43impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> MKMap<K, V, S> {
44 pub fn new(entries: &[(K, V)]) -> StdResult<Self> {
46 Self::new_from_iter(entries.to_vec())
47 }
48
49 pub fn new_from_iter<T: IntoIterator<Item = (K, V)>>(entries: T) -> StdResult<Self> {
51 let inner_map_values = BTreeMap::default();
52 let inner_merkle_tree = MKTree::<S>::new::<MKTreeNode>(&[])?;
53 let can_compute_proof_keys = BTreeSet::default();
54 let mut mk_map = Self {
55 inner_map_values,
56 inner_merkle_tree,
57 provable_keys: can_compute_proof_keys,
58 };
59 let sorted_entries = BTreeMap::from_iter(entries);
60 for (key, value) in sorted_entries {
61 mk_map.insert_unchecked(key, value)?;
62 }
63
64 Ok(mk_map)
65 }
66
67 pub fn insert(&mut self, key: K, value: V) -> StdResult<()> {
71 if let Some(existing_value) = self.inner_map_values.get(&key) {
72 if existing_value.compute_root()? != value.compute_root()? {
73 return Err(anyhow!(
74 "MKMap values should be replaced by entry with same root"
75 ));
76 }
77 return self.replace_unchecked(key, value);
78 } else {
79 let key_max = self.inner_map_values.keys().max();
80 if key_max > Some(&key) {
81 return Err(anyhow!("MKMap keys must be inserted in order"));
82 }
83 }
84
85 self.insert_unchecked(key, value)
86 }
87
88 fn insert_unchecked(&mut self, key: K, value: V) -> StdResult<()> {
90 self.update_provable_keys(&key, &value)?;
91 self.inner_map_values.insert(key.clone(), value.clone());
92 let mktree_node_value = value
93 .try_into()
94 .map_err(|_| anyhow!("MKMap could not convert value to NKTreeNode"))
95 .with_context(|| "MKMap could not convert insert value")?;
96 let mktree_node_key: MKTreeNode = key.into();
97 self.inner_merkle_tree
98 .append(&[mktree_node_key + mktree_node_value])?;
99
100 Ok(())
101 }
102
103 pub fn replace(&mut self, key: K, value: V) -> StdResult<()> {
105 match self.inner_map_values.get(&key) {
106 Some(existing_value) if existing_value.compute_root()? != value.compute_root()? => Err(
107 anyhow!("MKMap values should be replaced by entry with same root"),
108 ),
109 Some(_) => self.replace_unchecked(key, value),
110 None => Err(anyhow!("MKMap could not replace non-existing key")),
111 }
112 }
113
114 fn replace_unchecked(&mut self, key: K, value: V) -> StdResult<()> {
116 self.update_provable_keys(&key, &value)?;
117 self.inner_map_values.insert(key.clone(), value.clone());
118
119 Ok(())
120 }
121
122 fn update_provable_keys(&mut self, key: &K, value: &V) -> StdResult<()> {
124 if value.can_compute_proof() {
125 self.provable_keys.insert(key.clone());
126 } else if self.provable_keys.contains(key) {
127 self.provable_keys.remove(key);
128 }
129
130 Ok(())
131 }
132
133 #[cfg(test)]
134 pub fn get_provable_keys(&self) -> &BTreeSet<K> {
136 &self.provable_keys
137 }
138
139 pub fn contains(&self, leaf: &MKTreeNode) -> Option<(&K, &V)> {
141 self.iter().find(|(_, v)| v.contains(leaf))
142 }
143
144 pub fn get(&self, key: &K) -> Option<&V> {
146 self.inner_map_values.get(key)
147 }
148
149 pub fn iter(&self) -> impl Iterator<Item = (&K, &V)> {
151 self.inner_map_values.iter()
152 }
153
154 pub fn len(&self) -> usize {
156 self.inner_map_values.len()
157 }
158
159 pub fn is_empty(&self) -> bool {
161 self.inner_map_values.is_empty()
162 }
163
164 pub fn compress(&mut self) -> StdResult<()> {
166 let keys = self.provable_keys.clone();
167 for key in keys {
168 if let Some(value) = self.get(&key) {
169 let value = value
170 .compute_root()?
171 .try_into()
172 .map_err(|_| anyhow!("Merkle root could not be converted to V"))?;
173 self.replace_unchecked(key.to_owned(), value)?;
174 }
175 }
176
177 Ok(())
178 }
179
180 pub fn compute_root(&self) -> StdResult<MKTreeNode> {
182 self.inner_merkle_tree.compute_root()
183 }
184
185 pub fn compute_proof<T: Into<MKTreeNode> + Clone>(
187 &self,
188 leaves: &[T],
189 ) -> StdResult<MKMapProof<K>> {
190 if leaves.is_empty() {
191 return Err(anyhow!("MKMap could not compute proof for empty leaves"));
192 }
193
194 let leaves_by_keys = self.group_leaves_by_keys(leaves);
195 let mut sub_proofs = BTreeMap::<K, MKMapProof<K>>::default();
196 for (key, sub_leaves) in leaves_by_keys {
197 if let Some(value) = self.get(&key) {
198 if let Some(proof) = value.compute_proof(&sub_leaves)? {
199 sub_proofs.insert(key.to_owned(), proof);
200 }
201 }
202 }
203
204 let master_proof = self
205 .inner_merkle_tree
206 .compute_proof(
207 &sub_proofs
208 .iter()
209 .map(|(k, p)| k.to_owned().into() + p.compute_root().to_owned())
210 .collect::<Vec<MKTreeNode>>(),
211 )
212 .with_context(|| "MKMap could not compute master proof")?;
213
214 Ok(MKMapProof::new(master_proof, sub_proofs))
215 }
216
217 fn group_leaves_by_keys<T: Into<MKTreeNode> + Clone>(
219 &self,
220 leaves: &[T],
221 ) -> HashMap<K, Vec<MKTreeNode>> {
222 let can_compute_proof_map: HashMap<K, V> = self
223 .provable_keys
224 .iter()
225 .filter_map(|k| self.get(k).map(|v| (k.to_owned(), v.to_owned())))
226 .collect();
227 let leaves_by_keys: HashMap<K, Vec<MKTreeNode>> = can_compute_proof_map
228 .iter()
229 .map(|(key, value)| {
230 let leaves_found = leaves
231 .iter()
232 .filter_map(|leaf| value.contains(leaf).then_some(leaf.to_owned().into()))
233 .collect::<Vec<_>>();
234
235 (key.to_owned(), leaves_found)
236 })
237 .fold(HashMap::default(), |mut acc, (key, leaves)| {
238 leaves.into_iter().for_each(|leaf| {
239 acc.entry(key.to_owned()).or_default().push(leaf);
240 });
241
242 acc
243 });
244
245 leaves_by_keys
246 }
247}
248
249impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> Clone for MKMap<K, V, S> {
250 fn clone(&self) -> Self {
251 let mut clone = Self::new(&[]).unwrap();
253 for (k, v) in self.inner_map_values.iter() {
254 clone.insert(k.to_owned(), v.to_owned()).unwrap();
255 }
256
257 clone
258 }
259}
260
261impl<'a, K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> From<&'a MKMap<K, V, S>>
262 for &'a MKTree<S>
263{
264 fn from(other: &'a MKMap<K, V, S>) -> Self {
265 &other.inner_merkle_tree
266 }
267}
268
269impl<K: MKMapKey, V: MKMapValue<K>, S: MKTreeStorer> TryFrom<MKMap<K, V, S>> for MKTreeNode {
270 type Error = StdError;
271 fn try_from(other: MKMap<K, V, S>) -> Result<Self, Self::Error> {
272 other.compute_root()
273 }
274}
275
276#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
278pub struct MKMapProof<K: MKMapKey> {
279 master_proof: MKProof,
280 sub_proofs: Vec<(K, MKMapProof<K>)>,
281}
282
283impl<K: MKMapKey> MKMapProof<K> {
284 pub fn new(master_proof: MKProof, sub_proofs: BTreeMap<K, MKMapProof<K>>) -> Self {
286 let sub_proofs = sub_proofs.into_iter().collect();
287 Self {
288 master_proof,
289 sub_proofs,
290 }
291 }
292
293 pub fn compute_root(&self) -> MKTreeNode {
295 self.master_proof.root().to_owned()
296 }
297
298 pub fn verify(&self) -> StdResult<()> {
300 for (_key, proof) in &self.sub_proofs {
301 proof
302 .verify()
303 .with_context(|| "MKMapProof could not verify sub proof")?;
304 }
305
306 self.master_proof
307 .verify()
308 .with_context(|| "MKMapProof could not verify master proof")?;
309 if !self.sub_proofs.is_empty() {
310 self.master_proof
311 .contains(
312 &self
313 .sub_proofs
314 .iter()
315 .map(|(k, p)| k.to_owned().into() + p.compute_root().to_owned())
316 .collect::<Vec<_>>(),
317 )
318 .with_context(|| "MKMapProof could not match verified leaves of master proof")?;
319 }
320
321 Ok(())
322 }
323
324 pub fn contains(&self, leaf: &MKTreeNode) -> StdResult<()> {
326 let contains_leaf = {
327 self.master_proof.contains(&[leaf.to_owned()]).is_ok()
328 || self
329 .sub_proofs
330 .iter()
331 .any(|(_k, p)| p.contains(leaf).is_ok())
332 };
333
334 contains_leaf
335 .then_some(())
336 .ok_or(anyhow!("MKMapProof does not contain leaf {:?}", leaf))
337 }
338
339 pub fn leaves(&self) -> Vec<MKTreeNode> {
341 if self.sub_proofs.is_empty() {
342 self.master_proof.leaves()
343 } else {
344 let mut leaves = vec![];
345 self.sub_proofs.iter().for_each(|(_k, p)| {
346 leaves.extend(p.leaves());
347 });
348
349 leaves
350 }
351 }
352}
353
354impl<K: MKMapKey> From<MKProof> for MKMapProof<K> {
355 fn from(other: MKProof) -> Self {
356 MKMapProof::new(other, BTreeMap::default())
357 }
358}
359
360#[derive(Clone)]
364pub enum MKMapNode<K: MKMapKey, S: MKTreeStorer> {
365 Map(Arc<MKMap<K, Self, S>>),
367
368 Tree(Arc<MKTree<S>>),
370
371 TreeNode(MKTreeNode),
373}
374
375impl<K: MKMapKey, S: MKTreeStorer> MKMapValue<K> for MKMapNode<K, S> {
376 fn compute_root(&self) -> StdResult<MKTreeNode> {
377 match self {
378 MKMapNode::Map(mk_map) => mk_map.compute_root(),
379 MKMapNode::Tree(merkle_tree) => merkle_tree.compute_root(),
380 MKMapNode::TreeNode(merkle_tree_node) => Ok(merkle_tree_node.to_owned()),
381 }
382 }
383
384 fn contains<T: Into<MKTreeNode> + Clone>(&self, leaf: &T) -> bool {
385 let leaf = leaf.to_owned().into();
386 match self {
387 MKMapNode::Map(mk_map) => mk_map.contains(&leaf).is_some(),
388 MKMapNode::Tree(merkle_tree) => merkle_tree.contains(&leaf),
389 MKMapNode::TreeNode(merkle_tree_node) => *merkle_tree_node == leaf,
390 }
391 }
392
393 fn can_compute_proof(&self) -> bool {
394 match self {
395 MKMapNode::Map(_) => true,
396 MKMapNode::Tree(_) => true,
397 MKMapNode::TreeNode(_) => false,
398 }
399 }
400
401 fn compute_proof<T: Into<MKTreeNode> + Clone>(
402 &self,
403 leaves: &[T],
404 ) -> StdResult<Option<MKMapProof<K>>> {
405 match self {
406 MKMapNode::Tree(ref value) => {
407 let proof = value
408 .compute_proof(
409 &leaves
410 .iter()
411 .map(|leaf| leaf.to_owned().into())
412 .collect::<Vec<_>>(),
413 )
414 .with_context(|| "MKMapValue could not compute sub proof for MKTree")?;
415 Ok(Some(proof.into()))
416 }
417 MKMapNode::Map(ref value) => {
418 let proof = value
419 .compute_proof(
420 &leaves
421 .iter()
422 .map(|leaf| leaf.to_owned().into())
423 .collect::<Vec<_>>(),
424 )
425 .with_context(|| "MKMapValue could not compute sub proof for MKMap")?;
426 Ok(Some(proof))
427 }
428 _ => Ok(None),
429 }
430 }
431}
432
433impl<K: MKMapKey, S: MKTreeStorer> From<MKMap<K, MKMapNode<K, S>, S>> for MKMapNode<K, S> {
434 fn from(other: MKMap<K, MKMapNode<K, S>, S>) -> Self {
435 MKMapNode::Map(Arc::new(other))
436 }
437}
438
439impl<K: MKMapKey, S: MKTreeStorer> From<MKTree<S>> for MKMapNode<K, S> {
440 fn from(other: MKTree<S>) -> Self {
441 MKMapNode::Tree(Arc::new(other))
442 }
443}
444
445impl<K: MKMapKey, S: MKTreeStorer> From<MKTreeNode> for MKMapNode<K, S> {
446 fn from(other: MKTreeNode) -> Self {
447 MKMapNode::TreeNode(other)
448 }
449}
450
451impl<K: MKMapKey, S: MKTreeStorer> TryFrom<MKMapNode<K, S>> for MKTreeNode {
452 type Error = StdError;
453 fn try_from(other: MKMapNode<K, S>) -> Result<Self, Self::Error> {
454 other.compute_root()
455 }
456}
457
458#[cfg(test)]
459mod tests {
460 use std::collections::BTreeSet;
461
462 use crate::{
463 crypto_helper::MKTreeStoreInMemory,
464 entities::{BlockNumber, BlockRange},
465 };
466
467 use super::*;
468
469 fn generate_merkle_trees(
470 total_leaves: u64,
471 block_range_length: u64,
472 ) -> Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)> {
473 (0..total_leaves / block_range_length)
474 .map(|block_range_index| {
475 let block_range = BlockRange::from_block_number_and_length(
476 BlockNumber(block_range_index),
477 BlockNumber(block_range_length),
478 )
479 .unwrap();
480 let merkle_tree_block_range = generate_merkle_tree(&block_range);
481 (block_range, merkle_tree_block_range)
482 })
483 .collect::<Vec<_>>()
484 }
485
486 fn generate_merkle_tree(block_range: &BlockRange) -> MKTree<MKTreeStoreInMemory> {
487 let leaves = (*block_range.start..*block_range.end)
488 .map(|leaf_index| leaf_index.to_string())
489 .collect::<Vec<_>>();
490 MKTree::new(&leaves).unwrap()
491 }
492
493 fn generate_merkle_trees_for_ranges(
494 block_ranges: &[BlockRange],
495 ) -> Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)> {
496 block_ranges
497 .iter()
498 .map(|block_range| (block_range.to_owned(), generate_merkle_tree(block_range)))
499 .collect()
500 }
501
502 fn into_mkmap_tree_entries(
503 entries: Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)>,
504 ) -> Vec<(BlockRange, MKMapNode<BlockRange, MKTreeStoreInMemory>)> {
505 entries
506 .into_iter()
507 .map(|(range, mktree)| (range, MKMapNode::Tree(Arc::new(mktree))))
508 .collect()
509 }
510
511 fn into_mkmap_tree_node_entries(
512 entries: Vec<(BlockRange, MKTree<MKTreeStoreInMemory>)>,
513 ) -> Vec<(BlockRange, MKMapNode<BlockRange, MKTreeStoreInMemory>)> {
514 entries
515 .into_iter()
516 .map(|(range, mktree)| (range, MKMapNode::TreeNode(mktree.try_into().unwrap())))
517 .collect()
518 }
519
520 #[test]
521 fn test_mk_map_should_compute_same_root_when_replacing_entry_with_equivalent() {
522 let entries = generate_merkle_trees(10, 3);
523 let mk_map_nodes =
524 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_node_entries(entries.clone()))
525 .unwrap();
526 let mk_map_full =
527 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
528
529 let mk_map_nodes_root = mk_map_nodes.compute_root().unwrap();
530 let mk_map_full_root = mk_map_full.compute_root().unwrap();
531
532 assert_eq!(mk_map_full_root, mk_map_nodes_root);
533 }
534
535 #[test]
536 fn test_mk_map_should_accept_replacement_with_same_root_value() {
537 let entries = generate_merkle_trees_for_ranges(&[
538 BlockRange::new(0, 3),
539 BlockRange::new(4, 6),
540 BlockRange::new(7, 9),
541 ]);
542 let mut mk_map =
543 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
544 let mk_map_root_expected = mk_map.compute_root().unwrap();
545 let block_range_replacement = BlockRange::new(0, 3);
546 let same_root_value = MKMapNode::TreeNode(
547 mk_map
548 .get(&block_range_replacement)
549 .unwrap()
550 .compute_root()
551 .unwrap(),
552 );
553
554 mk_map
555 .insert(block_range_replacement, same_root_value)
556 .unwrap();
557
558 assert_eq!(mk_map_root_expected, mk_map.compute_root().unwrap())
559 }
560
561 #[test]
562 fn test_mk_map_should_reject_replacement_with_different_root_value() {
563 let entries = generate_merkle_trees_for_ranges(&[
564 BlockRange::new(0, 3),
565 BlockRange::new(4, 6),
566 BlockRange::new(7, 9),
567 ]);
568 let mut mk_map =
569 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
570 let block_range_replacement = BlockRange::new(0, 3);
571 let value_replacement: MKTreeNode = "test-123".to_string().into();
572 let different_root_value = MKMapNode::TreeNode(value_replacement);
573
574 mk_map
575 .insert(block_range_replacement, different_root_value)
576 .expect_err("the MKMap should reject replacement with different root value");
577 }
578
579 #[test]
580 fn test_mk_map_replace_should_accept_replacement_with_same_root_value() {
581 let entries = generate_merkle_trees_for_ranges(&[
582 BlockRange::new(0, 3),
583 BlockRange::new(4, 6),
584 BlockRange::new(7, 9),
585 ]);
586 let mut mk_map =
587 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
588 let block_range_replacement = BlockRange::new(0, 3);
589 let same_root_value = MKMapNode::TreeNode(
590 mk_map
591 .get(&block_range_replacement)
592 .unwrap()
593 .compute_root()
594 .unwrap(),
595 );
596 let mk_map_root_expected = mk_map.compute_root().unwrap();
597
598 assert!(matches!(
599 mk_map.get(&block_range_replacement).unwrap(),
600 MKMapNode::Tree(..)
601 ));
602
603 mk_map
604 .replace(block_range_replacement.clone(), same_root_value)
605 .unwrap();
606
607 assert_eq!(mk_map_root_expected, mk_map.compute_root().unwrap());
608 assert!(matches!(
609 mk_map.get(&block_range_replacement).unwrap(),
610 MKMapNode::TreeNode(..)
611 ));
612 }
613
614 #[test]
615 fn test_mk_map_replace_should_reject_replacement_if_key_doesnt_exist() {
616 let entries = generate_merkle_trees_for_ranges(&[
617 BlockRange::new(0, 3),
618 BlockRange::new(4, 6),
619 BlockRange::new(7, 9),
620 ]);
621 let mut mk_map =
622 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
623
624 let error = mk_map
625 .replace(
626 BlockRange::new(10, 12),
627 MKMapNode::TreeNode("whatever".into()),
628 )
629 .expect_err("the MKMap should reject replacement for nonexisting key");
630
631 assert!(
632 error
633 .to_string()
634 .contains("MKMap could not replace non-existing key"),
635 "Invalid error message: `{error}`",
636 );
637 }
638
639 #[test]
640 fn test_mk_map_replace_should_reject_replacement_with_different_root_value() {
641 let entries = generate_merkle_trees_for_ranges(&[
642 BlockRange::new(0, 3),
643 BlockRange::new(4, 6),
644 BlockRange::new(7, 9),
645 ]);
646 let mut mk_map =
647 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
648
649 let error = mk_map
650 .replace(
651 BlockRange::new(0, 3),
652 MKMapNode::TreeNode("different_value".into()),
653 )
654 .expect_err("the MKMap should reject replacement with different root value");
655
656 assert!(
657 error
658 .to_string()
659 .contains("MKMap values should be replaced by entry with same root"),
660 "Invalid error message: `{error}`",
661 );
662 }
663
664 #[test]
665 fn test_mk_map_should_compress_correctly() {
666 let entries = generate_merkle_trees_for_ranges(&[
667 BlockRange::new(0, 3),
668 BlockRange::new(4, 6),
669 BlockRange::new(7, 9),
670 ]);
671 let mk_map =
672 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
673 let mk_map_root_expected = mk_map.compute_root().unwrap();
674 let mk_map_provable_keys = mk_map.get_provable_keys();
675 assert!(!mk_map_provable_keys.is_empty());
676
677 let mut mk_map_compressed = mk_map.clone();
678 mk_map_compressed.compress().unwrap();
679
680 let mk_map_compressed_root = mk_map_compressed.compute_root().unwrap();
681 let mk_map_compressed_provable_keys = mk_map_compressed.get_provable_keys();
682 assert_eq!(mk_map_root_expected, mk_map_compressed_root);
683 assert!(mk_map_compressed_provable_keys.is_empty());
684 }
685
686 #[test]
687 fn test_mk_map_should_reject_out_of_order_insertion() {
688 let entries = generate_merkle_trees_for_ranges(&[
689 BlockRange::new(0, 3),
690 BlockRange::new(4, 6),
691 BlockRange::new(7, 9),
692 ]);
693 let mut mk_map =
694 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_node_entries(entries))
695 .unwrap();
696 let out_of_order_entry = (
697 BlockRange::new(0, 25),
698 MKMapNode::TreeNode("test-123".into()),
699 );
700
701 mk_map
702 .insert(out_of_order_entry.0, out_of_order_entry.1)
703 .expect_err("the MKMap should reject out of order insertion");
704 }
705
706 #[test]
707 fn test_mk_map_should_list_keys_correctly() {
708 let entries = generate_merkle_trees_for_ranges(&[
709 BlockRange::new(0, 3),
710 BlockRange::new(4, 6),
711 BlockRange::new(7, 9),
712 ]);
713 let merkle_tree_entries = &into_mkmap_tree_node_entries(entries);
714 let mk_map =
715 MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_entries.as_slice()).unwrap();
716
717 let keys = mk_map
718 .iter()
719 .map(|(k, _v)| k.to_owned())
720 .collect::<Vec<_>>();
721 let expected_keys = merkle_tree_entries
722 .iter()
723 .map(|(k, _)| k)
724 .cloned()
725 .collect::<Vec<_>>();
726
727 assert_eq!(expected_keys, keys);
728 }
729
730 #[test]
731 fn test_mk_map_should_list_values_correctly() {
732 let entries = generate_merkle_trees_for_ranges(&[
733 BlockRange::new(0, 3),
734 BlockRange::new(4, 6),
735 BlockRange::new(7, 9),
736 ]);
737 let merkle_tree_entries = &into_mkmap_tree_node_entries(entries);
738 let mk_map =
739 MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_entries.as_slice()).unwrap();
740
741 let values = mk_map
742 .iter()
743 .map(|(_k, v)| v.to_owned())
744 .collect::<Vec<_>>();
745 let expected_values = merkle_tree_entries
746 .iter()
747 .map(|(_, v)| v)
748 .cloned()
749 .collect::<Vec<_>>();
750
751 assert_eq!(
752 BTreeSet::from_iter(expected_values.iter().map(|v| v.compute_root().unwrap())),
753 BTreeSet::from_iter(values.iter().map(|v| v.compute_root().unwrap()))
754 );
755 }
756
757 #[test]
758 fn test_mk_map_should_find_value_correctly() {
759 let entries = generate_merkle_trees_for_ranges(&[
760 BlockRange::new(0, 3),
761 BlockRange::new(4, 6),
762 BlockRange::new(7, 9),
763 ]);
764 let mktree_node_to_certify = entries[2].1.leaves()[1].clone();
765 let mk_map_full =
766 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
767
768 mk_map_full.contains(&mktree_node_to_certify).unwrap();
769 }
770
771 #[test]
772 fn test_mk_map_should_clone_and_compute_same_root() {
773 let entries = generate_merkle_trees_for_ranges(&[
774 BlockRange::new(0, 3),
775 BlockRange::new(4, 6),
776 BlockRange::new(7, 9),
777 ]);
778 let mk_map =
779 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
780
781 let mk_map_clone = mk_map.clone();
782
783 assert_eq!(
784 mk_map.compute_root().unwrap(),
785 mk_map_clone.compute_root().unwrap(),
786 );
787 }
788
789 #[test]
790 fn test_mk_map_should_not_compute_proof_for_no_leaves() {
791 let entries = generate_merkle_trees(10, 3);
792 let mktree_nodes_to_certify: &[MKTreeNode] = &[];
793 let mk_map_full =
794 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
795
796 mk_map_full
797 .compute_proof(mktree_nodes_to_certify)
798 .expect_err("MKMap should not compute proof for no leaves");
799 }
800
801 #[test]
802 fn test_mk_map_should_compute_and_verify_valid_proof() {
803 let entries = generate_merkle_trees(10, 3);
804 let mktree_nodes_to_certify = [
805 entries[0].1.leaves()[0].clone(),
806 entries[1].1.leaves()[0].clone(),
807 entries[1].1.leaves()[1].clone(),
808 entries[2].1.leaves()[1].clone(),
809 ];
810 let mk_map_full =
811 MKMap::<_, _, MKTreeStoreInMemory>::new(&into_mkmap_tree_entries(entries)).unwrap();
812 let mk_map_proof = mk_map_full.compute_proof(&mktree_nodes_to_certify).unwrap();
813
814 mk_map_proof.verify().unwrap();
815
816 let map_proof_root = mk_map_proof.compute_root();
817 let map_proof_root_expected = mk_map_full.compute_root().unwrap();
818 assert_eq!(map_proof_root, map_proof_root_expected);
819
820 let mk_proof_leaves = mk_map_proof.leaves();
821 assert_eq!(mktree_nodes_to_certify.to_vec(), mk_proof_leaves);
822 }
823
824 #[test]
825 fn test_mk_map_should_compute_and_verify_valid_proof_recursively() {
826 let entries = generate_merkle_trees(100, 3);
827 let mktree_nodes_to_certify = [
828 entries[0].1.leaves()[0].clone(),
829 entries[2].1.leaves()[1].clone(),
830 entries[3].1.leaves()[2].clone(),
831 entries[20].1.leaves()[0].clone(),
832 entries[30].1.leaves()[0].clone(),
833 ];
834 let merkle_tree_node_entries = &into_mkmap_tree_entries(entries)
835 .chunks(10)
836 .map(|entries| {
837 (
838 entries
839 .iter()
840 .fold(BlockRange::new(0, 0), |acc, (range, _)| {
841 acc.try_add(range).unwrap()
842 }),
843 MKMapNode::Map(Arc::new(MKMap::new(entries).unwrap())),
844 )
845 })
846 .collect::<Vec<_>>();
847
848 let mk_map_full =
849 MKMap::<_, _, MKTreeStoreInMemory>::new(merkle_tree_node_entries.as_slice()).unwrap();
850
851 let mk_map_proof = mk_map_full.compute_proof(&mktree_nodes_to_certify).unwrap();
852
853 mk_map_proof.verify().unwrap();
854
855 let map_proof_root = mk_map_proof.compute_root();
856 let map_proof_root_expected = mk_map_full.compute_root().unwrap();
857 assert_eq!(map_proof_root, map_proof_root_expected);
858 }
859}