1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
//! Top-level API for Mithril Stake-based Threshold Multisignature scheme.
//! See figure 6 of [the paper](https://eprint.iacr.org/2021/916) for most of the
//! protocol.
//!
//! What follows is a simple example showing the usage of STM.
//!
//! ```rust
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use blake2::{Blake2b, digest::consts::U32};
//! use mithril_stm::key_reg::KeyReg; // Import key registration functionality
//! use mithril_stm::stm::{StmClerk, StmInitializer, StmParameters, StmSig, StmSigner};
//! use mithril_stm::AggregationError;
//! use rayon::prelude::*; // We use par_iter to speed things up
//!
//! use rand_chacha::ChaCha20Rng;
//! use rand_core::{RngCore, SeedableRng};
//!
//! let nparties = 4; // Use a small number of parties for this example
//! type D = Blake2b<U32>; // Setting the hash function for convenience
//!
//! let mut rng = ChaCha20Rng::from_seed([0u8; 32]); // create and initialize rng
//! let mut msg = [0u8; 16]; // setting an arbitrary message
//! rng.fill_bytes(&mut msg);
//!
//! // In the following, we will have 4 parties try to sign `msg`, then aggregate and
//! // verify those signatures.
//!
//! //////////////////////////
//! // initialization phase //
//! //////////////////////////
//!
//! // Set low parameters for testing
//! // XXX: not for production
//! let params = StmParameters {
//! m: 100, // Security parameter XXX: not for production
//! k: 2, // Quorum parameter XXX: not for production
//! phi_f: 0.2, // Lottery parameter XXX: not for production
//! };
//!
//! // Generate some arbitrary stake for each party
//! // Stake is an integer.
//! // Total stake of all parties is total stake in the system.
//! let stakes = (0..nparties)
//! .into_iter()
//! .map(|_| 1 + (rng.next_u64() % 9999))
//! .collect::<Vec<_>>();
//!
//! // Create a new key registry from the parties and their stake
//! let mut key_reg = KeyReg::init();
//!
//! // For each party, crate a StmInitializer.
//! // This struct can create keys for the party.
//! let mut ps: Vec<StmInitializer> = Vec::with_capacity(nparties);
//! for stake in stakes {
//! // Create keys for this party
//! let p = StmInitializer::setup(params, stake, &mut rng);
//! // Register keys with the KeyReg service
//! key_reg
//! .register(p.stake, p.verification_key())
//! .unwrap();
//! ps.push(p);
//! }
//!
//! // Close the key registration.
//! let closed_reg = key_reg.close();
//!
//! // Finalize the StmInitializer and turn it into a StmSigner, which can execute the
//! // rest of the protocol.
//! let ps = ps
//! .into_par_iter()
//! .map(|p| p.new_signer(closed_reg.clone()).unwrap())
//! .collect::<Vec<StmSigner<D>>>();
//!
//! /////////////////////
//! // operation phase //
//! /////////////////////
//!
//! // Next, each party tries to sign the message for each index available.
//! // We collect the successful signatures into a vec.
//! let sigs = ps
//! .par_iter()
//! .filter_map(|p| {
//! return p.sign(&msg);
//! })
//! .collect::<Vec<StmSig>>();
//!
//! // StmClerk can aggregate and verify signatures.
//! let clerk = StmClerk::from_signer(&ps[0]);
//!
//! // Aggregate and verify the signatures
//! let msig = clerk.aggregate(&sigs, &msg);
//! match msig {
//! Ok(aggr) => {
//! println!("Aggregate ok");
//! assert!(aggr
//! .verify(&msg, &clerk.compute_avk(), ¶ms)
//! .is_ok());
//! }
//! Err(AggregationError::NotEnoughSignatures(n, k)) => {
//! println!("Not enough signatures");
//! assert!(n < params.k && k == params.k)
//! }
//! Err(_) => unreachable!(),
//! }
//! # Ok(())
//! # }
//! ```
use crate::eligibility_check::ev_lt_phi;
use crate::error::{
AggregationError, CoreVerifierError, RegisterError, StmAggregateSignatureError,
StmSignatureError,
};
use crate::key_reg::{ClosedKeyReg, RegParty};
use crate::merkle_tree::{BatchPath, MTLeaf, MerkleTreeCommitmentBatchCompat};
use crate::multi_sig::{Signature, SigningKey, VerificationKey, VerificationKeyPoP};
use blake2::digest::{Digest, FixedOutput};
use rand_core::{CryptoRng, RngCore};
use serde::ser::SerializeTuple;
use serde::{Deserialize, Serialize, Serializer};
use std::cmp::Ordering;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::convert::{From, TryFrom, TryInto};
use std::hash::{Hash, Hasher};
/// The quantity of stake held by a party, represented as a `u64`.
pub type Stake = u64;
/// Quorum index for signatures.
/// An aggregate signature (`StmMultiSig`) must have at least `k` unique indices.
pub type Index = u64;
/// Wrapper of the MultiSignature Verification key with proof of possession
pub type StmVerificationKeyPoP = VerificationKeyPoP;
/// Wrapper of the MultiSignature Verification key
pub type StmVerificationKey = VerificationKey;
/// Used to set protocol parameters.
// todo: this is the criteria to consider parameters valid:
// Let A = max assumed adversarial stake
// Let a = A / max_stake
// Let p = φ(a) // f needs tuning, something close to 0.2 is reasonable
// Then, we're secure if SUM[from i=k to i=m] Binomial(i successes, m experiments, p chance of success) <= 2^-100 or thereabouts.
// The latter turns to 1 - BinomialCDF(k-1,m,p)
#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
pub struct StmParameters {
/// Security parameter, upper bound on indices.
pub m: u64,
/// Quorum parameter.
pub k: u64,
/// `f` in phi(w) = 1 - (1 - f)^w, where w is the stake of a participant..
pub phi_f: f64,
}
/// Initializer for `StmSigner`.
/// This is the data that is used during the key registration procedure.
/// Once the latter is finished, this instance is consumed into an `StmSigner`.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StmInitializer {
/// This participant's stake.
pub stake: Stake,
/// Current protocol instantiation parameters.
pub params: StmParameters,
/// Secret key.
pub(crate) sk: SigningKey,
/// Verification (public) key + proof of possession.
pub(crate) pk: StmVerificationKeyPoP,
}
/// Participant in the protocol can sign messages.
/// * If the signer has `closed_reg`, then it can generate Stm certificate.
/// * This kind of signer can only be generated out of an `StmInitializer` and a `ClosedKeyReg`.
/// * This ensures that a `MerkleTree` root is not computed before all participants have registered.
/// * If the signer does not have `closed_reg`, then it is a core signer.
/// * This kind of signer cannot participate certificate generation.
/// * Signature generated can be verified by a full node verifier (core verifier).
#[derive(Debug, Clone)]
pub struct StmSigner<D: Digest> {
signer_index: u64,
stake: Stake,
params: StmParameters,
sk: SigningKey,
vk: StmVerificationKey,
closed_reg: Option<ClosedKeyReg<D>>,
}
/// `StmClerk` can verify and aggregate `StmSig`s and verify `StmMultiSig`s.
/// Clerks can only be generated with the registration closed.
/// This avoids that a Merkle Tree is computed before all parties have registered.
#[derive(Debug, Clone)]
pub struct StmClerk<D: Clone + Digest> {
pub(crate) closed_reg: ClosedKeyReg<D>,
pub(crate) params: StmParameters,
}
/// Signature created by a single party who has won the lottery.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct StmSig {
/// The signature from the underlying MSP scheme.
pub sigma: Signature,
/// The index(es) for which the signature is valid
pub indexes: Vec<Index>,
/// Merkle tree index of the signer.
pub signer_index: Index,
}
/// Stm aggregate key (batch compatible), which contains the merkle tree commitment and the total stake of the system.
/// Batch Compat Merkle tree commitment includes the number of leaves in the tree in order to obtain batch path.
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(bound(
serialize = "BatchPath<D>: Serialize",
deserialize = "BatchPath<D>: Deserialize<'de>"
))]
pub struct StmAggrVerificationKey<D: Clone + Digest + FixedOutput> {
mt_commitment: MerkleTreeCommitmentBatchCompat<D>,
total_stake: Stake,
}
impl<D: Digest + Clone + FixedOutput> PartialEq for StmAggrVerificationKey<D> {
fn eq(&self, other: &Self) -> bool {
self.mt_commitment == other.mt_commitment && self.total_stake == other.total_stake
}
}
impl<D: Digest + Clone + FixedOutput> Eq for StmAggrVerificationKey<D> {}
/// Signature with its registered party.
#[derive(Debug, Clone, Hash, Deserialize, Eq, PartialEq, Ord, PartialOrd)]
pub struct StmSigRegParty {
/// Stm signature
pub sig: StmSig,
/// Registered party
pub reg_party: RegParty,
}
impl Serialize for StmSigRegParty {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut tuple = serializer.serialize_tuple(2)?;
tuple.serialize_element(&self.sig)?;
tuple.serialize_element(&self.reg_party)?;
tuple.end()
}
}
/// `StmMultiSig` uses the "concatenation" proving system (as described in Section 4.3 of the original paper.)
/// This means that the aggregated signature contains a vector with all individual signatures.
/// BatchPath is also a part of the aggregate signature which covers path for all signatures.
#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(bound(
serialize = "BatchPath<D>: Serialize",
deserialize = "BatchPath<D>: Deserialize<'de>"
))]
pub struct StmAggrSig<D: Clone + Digest + FixedOutput> {
pub(crate) signatures: Vec<StmSigRegParty>,
/// The list of unique merkle tree nodes that covers path for all signatures.
pub batch_proof: BatchPath<D>,
}
/// Full node verifier including the list of eligible signers and the total stake of the system.
pub struct CoreVerifier {
/// List of registered parties.
pub eligible_parties: Vec<RegParty>,
/// Total stake of registered parties.
pub total_stake: Stake,
}
impl StmParameters {
/// Convert to bytes
/// # Layout
/// * Security parameter, `m` (as u64)
/// * Quorum parameter, `k` (as u64)
/// * Phi f, as (f64)
pub fn to_bytes(&self) -> [u8; 24] {
let mut out = [0; 24];
out[..8].copy_from_slice(&self.m.to_be_bytes());
out[8..16].copy_from_slice(&self.k.to_be_bytes());
out[16..].copy_from_slice(&self.phi_f.to_be_bytes());
out
}
/// Extract the `StmParameters` from a byte slice.
/// # Error
/// The function fails if the given string of bytes is not of required size.
pub fn from_bytes(bytes: &[u8]) -> Result<Self, RegisterError> {
if bytes.len() != 24 {
return Err(RegisterError::SerializationError);
}
let mut u64_bytes = [0u8; 8];
u64_bytes.copy_from_slice(&bytes[..8]);
let m = u64::from_be_bytes(u64_bytes);
u64_bytes.copy_from_slice(&bytes[8..16]);
let k = u64::from_be_bytes(u64_bytes);
u64_bytes.copy_from_slice(&bytes[16..]);
let phi_f = f64::from_be_bytes(u64_bytes);
Ok(Self { m, k, phi_f })
}
}
impl StmInitializer {
/// Builds an `StmInitializer` that is ready to register with the key registration service.
/// This function generates the signing and verification key with a PoP, and initialises the structure.
pub fn setup<R: RngCore + CryptoRng>(params: StmParameters, stake: Stake, rng: &mut R) -> Self {
let sk = SigningKey::gen(rng);
let pk = StmVerificationKeyPoP::from(&sk);
Self {
stake,
params,
sk,
pk,
}
}
/// Extract the verification key.
pub fn verification_key(&self) -> StmVerificationKeyPoP {
self.pk
}
/// Build the `avk` for the given list of parties.
///
/// Note that if this StmInitializer was modified *between* the last call to `register`,
/// then the resulting `StmSigner` may not be able to produce valid signatures.
///
/// Returns an `StmSigner` specialized to
/// * this `StmSigner`'s ID and current stake
/// * this `StmSigner`'s parameter valuation
/// * the `avk` as built from the current registered parties (according to the registration service)
/// * the current total stake (according to the registration service)
/// # Error
/// This function fails if the initializer is not registered.
pub fn new_signer<D: Digest + Clone>(
self,
closed_reg: ClosedKeyReg<D>,
) -> Result<StmSigner<D>, RegisterError> {
let mut my_index = None;
for (i, rp) in closed_reg.reg_parties.iter().enumerate() {
if rp.0 == self.pk.vk {
my_index = Some(i as u64);
break;
}
}
if my_index.is_none() {
return Err(RegisterError::UnregisteredInitializer);
}
Ok(StmSigner {
signer_index: my_index.unwrap(),
stake: self.stake,
params: self.params,
sk: self.sk,
vk: self.pk.vk,
closed_reg: Some(closed_reg),
})
}
/// Creates a new core signer that does not include closed registration.
/// Takes `eligible_parties` as a parameter and determines the signer's index in the parties.
/// `eligible_parties` is verified and trusted which is only run by a full-node
/// that has already verified the parties.
pub fn new_core_signer<D: Digest + Clone>(
self,
eligible_parties: &[RegParty],
) -> Option<StmSigner<D>> {
let mut parties = eligible_parties.to_vec();
parties.sort_unstable();
let mut my_index = None;
for (i, rp) in parties.iter().enumerate() {
if rp.0 == self.pk.vk {
my_index = Some(i as u64);
break;
}
}
if let Some(index) = my_index {
Some(StmSigner {
signer_index: index,
stake: self.stake,
params: self.params,
sk: self.sk,
vk: self.pk.vk,
closed_reg: None,
})
} else {
None
}
}
/// Convert to bytes
/// # Layout
/// * Stake (u64)
/// * Params
/// * Secret Key
/// * Public key (including PoP)
pub fn to_bytes(&self) -> [u8; 256] {
let mut out = [0u8; 256];
out[..8].copy_from_slice(&self.stake.to_be_bytes());
out[8..32].copy_from_slice(&self.params.to_bytes());
out[32..64].copy_from_slice(&self.sk.to_bytes());
out[64..].copy_from_slice(&self.pk.to_bytes());
out
}
/// Convert a slice of bytes to an `StmInitializer`
/// # Error
/// The function fails if the given string of bytes is not of required size.
pub fn from_bytes(bytes: &[u8]) -> Result<StmInitializer, RegisterError> {
let mut u64_bytes = [0u8; 8];
u64_bytes.copy_from_slice(&bytes[..8]);
let stake = u64::from_be_bytes(u64_bytes);
let params = StmParameters::from_bytes(&bytes[8..32])?;
let sk = SigningKey::from_bytes(&bytes[32..])?;
let pk = StmVerificationKeyPoP::from_bytes(&bytes[64..])?;
Ok(Self {
stake,
params,
sk,
pk,
})
}
}
impl<D: Clone + Digest + FixedOutput> StmSigner<D> {
/// This function produces a signature following the description of Section 2.4.
/// Once the signature is produced, this function checks whether any index in `[0,..,self.params.m]`
/// wins the lottery by evaluating the dense mapping.
/// It records all the winning indexes in `Self.indexes`.
/// If it wins at least one lottery, it stores the signer's merkle tree index. The proof of membership
/// will be handled by the aggregator.
pub fn sign(&self, msg: &[u8]) -> Option<StmSig> {
let closed_reg = self.closed_reg.as_ref().expect("Closed registration not found! Cannot produce StmSignatures. Use core_sign to produce core signatures (not valid for an StmCertificate).");
let msgp = closed_reg
.merkle_tree
.to_commitment_batch_compat()
.concat_with_msg(msg);
let signature = self.core_sign(&msgp, closed_reg.total_stake)?;
Some(StmSig {
sigma: signature.sigma,
signer_index: self.signer_index,
indexes: signature.indexes,
})
}
/// Extract the verification key.
pub fn verification_key(&self) -> StmVerificationKey {
self.vk
}
/// Extract stake from the signer.
pub fn get_stake(&self) -> Stake {
self.stake
}
/// A core signature generated without closed registration.
/// The core signature can be verified by core verifier.
/// Once the signature is produced, this function checks whether any index in `[0,..,self.params.m]`
/// wins the lottery by evaluating the dense mapping.
/// It records all the winning indexes in `Self.indexes`.
pub fn core_sign(&self, msg: &[u8], total_stake: Stake) -> Option<StmSig> {
let sigma = self.sk.sign(msg);
let indexes = self.check_lottery(msg, &sigma, total_stake);
if !indexes.is_empty() {
Some(StmSig {
sigma,
indexes,
signer_index: self.signer_index,
})
} else {
None
}
}
/// Collects and returns the winning indices.
pub fn check_lottery(&self, msg: &[u8], sigma: &Signature, total_stake: Stake) -> Vec<u64> {
let mut indexes = Vec::new();
for index in 0..self.params.m {
if ev_lt_phi(
self.params.phi_f,
sigma.eval(msg, index),
self.stake,
total_stake,
) {
indexes.push(index);
}
}
indexes
}
}
impl<D: Digest + Clone + FixedOutput> StmClerk<D> {
/// Create a new `Clerk` from a closed registration instance.
pub fn from_registration(params: &StmParameters, closed_reg: &ClosedKeyReg<D>) -> Self {
Self {
params: *params,
closed_reg: closed_reg.clone(),
}
}
/// Create a Clerk from a signer.
pub fn from_signer(signer: &StmSigner<D>) -> Self {
let closed_reg = signer
.closed_reg
.clone()
.expect("Core signer does not include closed registration. StmClerk, and so, the Stm certificate cannot be built without closed registration!");
Self {
params: signer.params,
closed_reg,
}
}
/// Aggregate a set of signatures for their corresponding indices.
///
/// This function first deduplicates the repeated signatures, and if there are enough signatures, it collects the merkle tree indexes of unique signatures.
/// The list of merkle tree indexes is used to create a batch proof, to prove that all signatures are from eligible signers.
///
/// It returns an instance of `StmAggrSig`.
pub fn aggregate(
&self,
sigs: &[StmSig],
msg: &[u8],
) -> Result<StmAggrSig<D>, AggregationError> {
let sig_reg_list = sigs
.iter()
.map(|sig| StmSigRegParty {
sig: sig.clone(),
reg_party: self.closed_reg.reg_parties[sig.signer_index as usize],
})
.collect::<Vec<StmSigRegParty>>();
let avk = StmAggrVerificationKey::from(&self.closed_reg);
let msgp = avk.mt_commitment.concat_with_msg(msg);
let mut unique_sigs = CoreVerifier::dedup_sigs_for_indices(
&self.closed_reg.total_stake,
&self.params,
&msgp,
&sig_reg_list,
)?;
unique_sigs.sort_unstable();
let mt_index_list = unique_sigs
.iter()
.map(|sig_reg| sig_reg.sig.signer_index as usize)
.collect::<Vec<usize>>();
let batch_proof = self.closed_reg.merkle_tree.get_batched_path(mt_index_list);
Ok(StmAggrSig {
signatures: unique_sigs,
batch_proof,
})
}
/// Compute the `StmAggrVerificationKey` related to the used registration.
pub fn compute_avk(&self) -> StmAggrVerificationKey<D> {
StmAggrVerificationKey::from(&self.closed_reg)
}
/// Get the (VK, stake) of a party given its index.
pub fn get_reg_party(&self, party_index: &Index) -> Option<(StmVerificationKey, Stake)> {
self.closed_reg
.reg_parties
.get(*party_index as usize)
.map(|&r| r.into())
}
}
impl StmSig {
/// Verify an stm signature by checking that the lottery was won, the merkle path is correct,
/// the indexes are in the desired range and the underlying multi signature validates.
pub fn verify<D: Clone + Digest + FixedOutput>(
&self,
params: &StmParameters,
pk: &StmVerificationKey,
stake: &Stake,
avk: &StmAggrVerificationKey<D>,
msg: &[u8],
) -> Result<(), StmSignatureError> {
let msgp = avk.mt_commitment.concat_with_msg(msg);
self.verify_core(params, pk, stake, &msgp, &avk.total_stake)?;
Ok(())
}
/// Verify that all indices of a signature are valid.
pub(crate) fn check_indices(
&self,
params: &StmParameters,
stake: &Stake,
msg: &[u8],
total_stake: &Stake,
) -> Result<(), StmSignatureError> {
for &index in &self.indexes {
if index > params.m {
return Err(StmSignatureError::IndexBoundFailed(index, params.m));
}
let ev = self.sigma.eval(msg, index);
if !ev_lt_phi(params.phi_f, ev, *stake, *total_stake) {
return Err(StmSignatureError::LotteryLost);
}
}
Ok(())
}
/// Convert an `StmSig` into bytes
///
/// # Layout
/// * Stake
/// * Number of valid indexes (as u64)
/// * Indexes of the signature
/// * Public Key
/// * Signature
/// * Merkle index of the signer.
pub fn to_bytes(&self) -> Vec<u8> {
let mut output = Vec::new();
output.extend_from_slice(&(self.indexes.len() as u64).to_be_bytes());
for index in &self.indexes {
output.extend_from_slice(&index.to_be_bytes());
}
output.extend_from_slice(&self.sigma.to_bytes());
output.extend_from_slice(&self.signer_index.to_be_bytes());
output
}
/// Extract a batch compatible `StmSig` from a byte slice.
pub fn from_bytes<D: Clone + Digest + FixedOutput>(
bytes: &[u8],
) -> Result<StmSig, StmSignatureError> {
let mut u64_bytes = [0u8; 8];
u64_bytes.copy_from_slice(&bytes[0..8]);
let nr_indexes = u64::from_be_bytes(u64_bytes) as usize;
let mut indexes = Vec::new();
for i in 0..nr_indexes {
u64_bytes.copy_from_slice(&bytes[8 + i * 8..16 + i * 8]);
indexes.push(u64::from_be_bytes(u64_bytes));
}
let offset = 8 + nr_indexes * 8;
let sigma = Signature::from_bytes(&bytes[offset..offset + 48])?;
u64_bytes.copy_from_slice(&bytes[offset + 48..offset + 56]);
let signer_index = u64::from_be_bytes(u64_bytes);
Ok(StmSig {
sigma,
indexes,
signer_index,
})
}
/// Compare two `StmSig` by their signers' merkle tree indexes.
pub fn cmp_stm_sig(&self, other: &Self) -> Ordering {
self.signer_index.cmp(&other.signer_index)
}
/// Verify a core signature by checking that the lottery was won,
/// the indexes are in the desired range and the underlying multi signature validates.
pub fn verify_core(
&self,
params: &StmParameters,
pk: &StmVerificationKey,
stake: &Stake,
msg: &[u8],
total_stake: &Stake,
) -> Result<(), StmSignatureError> {
self.sigma.verify(msg, pk)?;
self.check_indices(params, stake, msg, total_stake)?;
Ok(())
}
}
impl Hash for StmSig {
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash_slice(&self.sigma.to_bytes(), state)
}
}
impl PartialEq for StmSig {
fn eq(&self, other: &Self) -> bool {
self.sigma == other.sigma
}
}
impl Eq for StmSig {}
impl PartialOrd for StmSig {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(std::cmp::Ord::cmp(self, other))
}
}
impl Ord for StmSig {
fn cmp(&self, other: &Self) -> Ordering {
self.cmp_stm_sig(other)
}
}
impl<D: Clone + Digest + FixedOutput> From<&ClosedKeyReg<D>> for StmAggrVerificationKey<D> {
fn from(reg: &ClosedKeyReg<D>) -> Self {
Self {
mt_commitment: reg.merkle_tree.to_commitment_batch_compat(),
total_stake: reg.total_stake,
}
}
}
impl StmSigRegParty {
/// Convert StmSigRegParty to bytes
/// # Layout
/// * RegParty
/// * Signature
pub fn to_bytes(&self) -> Vec<u8> {
let mut out = Vec::new();
out.extend_from_slice(&self.reg_party.to_bytes());
out.extend_from_slice(&self.sig.to_bytes());
out
}
///Extract a `StmSigRegParty` from a byte slice.
pub fn from_bytes<D: Digest + Clone + FixedOutput>(
bytes: &[u8],
) -> Result<StmSigRegParty, StmSignatureError> {
let reg_party = RegParty::from_bytes(&bytes[0..104])?;
let sig = StmSig::from_bytes::<D>(&bytes[104..])?;
Ok(StmSigRegParty { sig, reg_party })
}
}
impl<D: Clone + Digest + FixedOutput + Send + Sync> StmAggrSig<D> {
/// Verify all checks from signatures, except for the signature verification itself.
///
/// Indices and quorum are checked by `CoreVerifier::preliminary_verify` with `msgp`.
/// It collects leaves from signatures and checks the batch proof.
/// After batch proof is checked, it collects and returns the signatures and
/// verification keys to be used by aggregate verification.
fn preliminary_verify(
&self,
msg: &[u8],
avk: &StmAggrVerificationKey<D>,
parameters: &StmParameters,
) -> Result<(Vec<Signature>, Vec<VerificationKey>), StmAggregateSignatureError<D>> {
let msgp = avk.mt_commitment.concat_with_msg(msg);
CoreVerifier::preliminary_verify(&avk.total_stake, &self.signatures, parameters, &msgp)?;
let leaves = self
.signatures
.iter()
.map(|r| r.reg_party)
.collect::<Vec<RegParty>>();
avk.mt_commitment.check(&leaves, &self.batch_proof)?;
Ok(CoreVerifier::collect_sigs_vks(&self.signatures))
}
/// Verify aggregate signature, by checking that
/// * each signature contains only valid indices,
/// * the lottery is indeed won by each one of them,
/// * the merkle tree path is valid,
/// * the aggregate signature validates with respect to the aggregate verification key
/// (aggregation is computed using functions `MSP.BKey` and `MSP.BSig` as described in Section 2.4 of the paper).
pub fn verify(
&self,
msg: &[u8],
avk: &StmAggrVerificationKey<D>,
parameters: &StmParameters,
) -> Result<(), StmAggregateSignatureError<D>> {
let msgp = avk.mt_commitment.concat_with_msg(msg);
let (sigs, vks) = self.preliminary_verify(msg, avk, parameters)?;
Signature::verify_aggregate(msgp.as_slice(), &vks, &sigs)?;
Ok(())
}
/// Batch verify a set of signatures, with different messages and avks.
#[cfg(feature = "batch-verify-aggregates")]
pub fn batch_verify(
stm_signatures: &[Self],
msgs: &[Vec<u8>],
avks: &[StmAggrVerificationKey<D>],
parameters: &[StmParameters],
) -> Result<(), StmAggregateSignatureError<D>> {
let batch_size = stm_signatures.len();
assert_eq!(
batch_size,
msgs.len(),
"Number of messages should correspond to size of the batch"
);
assert_eq!(
batch_size,
avks.len(),
"Number of avks should correspond to size of the batch"
);
assert_eq!(
batch_size,
parameters.len(),
"Number of parameters should correspond to size of the batch"
);
let mut aggr_sigs = Vec::with_capacity(batch_size);
let mut aggr_vks = Vec::with_capacity(batch_size);
for (idx, sig_group) in stm_signatures.iter().enumerate() {
sig_group.preliminary_verify(&msgs[idx], &avks[idx], ¶meters[idx])?;
let grouped_sigs: Vec<Signature> = sig_group
.signatures
.iter()
.map(|sig_reg| sig_reg.sig.sigma)
.collect();
let grouped_vks: Vec<VerificationKey> = sig_group
.signatures
.iter()
.map(|sig_reg| sig_reg.reg_party.0)
.collect();
let (aggr_vk, aggr_sig) = Signature::aggregate(&grouped_vks, &grouped_sigs).unwrap();
aggr_sigs.push(aggr_sig);
aggr_vks.push(aggr_vk);
}
let concat_msgs: Vec<Vec<u8>> = msgs
.iter()
.zip(avks.iter())
.map(|(msg, avk)| avk.mt_commitment.concat_with_msg(msg))
.collect();
Signature::batch_verify_aggregates(&concat_msgs, &aggr_vks, &aggr_sigs)?;
Ok(())
}
/// Convert multi signature to bytes
/// # Layout
/// * Number of the pairs of Signatures and Registered Parties (SigRegParty) (as u64)
/// * Size of a pair of Signature and Registered Party
/// * Pairs of Signatures and Registered Parties
/// * Batch proof
pub fn to_bytes(&self) -> Vec<u8> {
let mut out = Vec::new();
out.extend_from_slice(&u64::try_from(self.signatures.len()).unwrap().to_be_bytes());
out.extend_from_slice(
&u64::try_from(self.signatures[0].to_bytes().len())
.unwrap()
.to_be_bytes(),
);
for sig_reg in &self.signatures {
out.extend_from_slice(&sig_reg.to_bytes());
}
let proof = &self.batch_proof;
out.extend_from_slice(&proof.to_bytes());
out
}
///Extract a `StmAggrSig` from a byte slice.
pub fn from_bytes(bytes: &[u8]) -> Result<StmAggrSig<D>, StmAggregateSignatureError<D>> {
let mut u64_bytes = [0u8; 8];
u64_bytes.copy_from_slice(&bytes[..8]);
let size = usize::try_from(u64::from_be_bytes(u64_bytes))
.map_err(|_| StmAggregateSignatureError::SerializationError)?;
u64_bytes.copy_from_slice(&bytes[8..16]);
let sig_reg_size = usize::try_from(u64::from_be_bytes(u64_bytes))
.map_err(|_| StmAggregateSignatureError::SerializationError)?;
let mut sig_reg_list = Vec::with_capacity(size);
for i in 0..size {
let sig_reg = StmSigRegParty::from_bytes::<D>(
&bytes[16 + (sig_reg_size * i)..16 + (sig_reg_size * (i + 1))],
)?;
sig_reg_list.push(sig_reg);
}
let offset = 16 + sig_reg_size * size;
let batch_proof = BatchPath::from_bytes(&bytes[offset..])?;
Ok(StmAggrSig {
signatures: sig_reg_list,
batch_proof,
})
}
}
impl CoreVerifier {
/// Setup a core verifier for given list of signers.
/// * Collect the unique signers in a hash set,
/// * Calculate the total stake of the eligible signers,
/// * Sort the eligible signers.
pub fn setup(public_signers: &[(VerificationKey, Stake)]) -> Self {
let mut total_stake: Stake = 0;
let mut unique_parties = HashSet::new();
for signer in public_signers.iter() {
let (res, overflow) = total_stake.overflowing_add(signer.1);
if overflow {
panic!("Total stake overflow");
}
total_stake = res;
unique_parties.insert(MTLeaf(signer.0, signer.1));
}
let mut eligible_parties: Vec<_> = unique_parties.into_iter().collect();
eligible_parties.sort_unstable();
CoreVerifier {
eligible_parties,
total_stake,
}
}
/// Preliminary verification that checks whether indices are unique and the quorum is achieved.
fn preliminary_verify(
total_stake: &Stake,
signatures: &[StmSigRegParty],
parameters: &StmParameters,
msg: &[u8],
) -> Result<(), CoreVerifierError> {
let mut nr_indices = 0;
let mut unique_indices = HashSet::new();
for sig_reg in signatures {
sig_reg
.sig
.check_indices(parameters, &sig_reg.reg_party.1, msg, total_stake)?;
for &index in &sig_reg.sig.indexes {
unique_indices.insert(index);
nr_indices += 1;
}
}
if nr_indices != unique_indices.len() {
return Err(CoreVerifierError::IndexNotUnique);
}
if (nr_indices as u64) < parameters.k {
return Err(CoreVerifierError::NoQuorum(nr_indices as u64, parameters.k));
}
Ok(())
}
/// Given a slice of `sig_reg_list`, this function returns a new list of `sig_reg_list` with only valid indices.
/// In case of conflict (having several signatures for the same index)
/// it selects the smallest signature (i.e. takes the signature with the smallest scalar).
/// The function selects at least `self.k` indexes.
/// # Error
/// If there is no sufficient signatures, then the function fails.
// todo: We need to agree on a criteria to dedup (by default we use a BTreeMap that guarantees keys order)
// todo: not good, because it only removes index if there is a conflict (see benches)
pub fn dedup_sigs_for_indices(
total_stake: &Stake,
params: &StmParameters,
msg: &[u8],
sigs: &[StmSigRegParty],
) -> Result<Vec<StmSigRegParty>, AggregationError> {
let mut sig_by_index: BTreeMap<Index, &StmSigRegParty> = BTreeMap::new();
let mut removal_idx_by_vk: HashMap<&StmSigRegParty, Vec<Index>> = HashMap::new();
for sig_reg in sigs.iter() {
if sig_reg
.sig
.verify_core(
params,
&sig_reg.reg_party.0,
&sig_reg.reg_party.1,
msg,
total_stake,
)
.is_err()
{
continue;
}
for index in sig_reg.sig.indexes.iter() {
let mut insert_this_sig = false;
if let Some(&previous_sig) = sig_by_index.get(index) {
let sig_to_remove_index = if sig_reg.sig.sigma < previous_sig.sig.sigma {
insert_this_sig = true;
previous_sig
} else {
sig_reg
};
if let Some(indexes) = removal_idx_by_vk.get_mut(sig_to_remove_index) {
indexes.push(*index);
} else {
removal_idx_by_vk.insert(sig_to_remove_index, vec![*index]);
}
} else {
insert_this_sig = true;
}
if insert_this_sig {
sig_by_index.insert(*index, sig_reg);
}
}
}
let mut dedup_sigs: HashSet<StmSigRegParty> = HashSet::new();
let mut count: u64 = 0;
for (_, &sig_reg) in sig_by_index.iter() {
if dedup_sigs.contains(sig_reg) {
continue;
}
let mut deduped_sig = sig_reg.clone();
if let Some(indexes) = removal_idx_by_vk.get(sig_reg) {
deduped_sig.sig.indexes = deduped_sig
.sig
.indexes
.clone()
.into_iter()
.filter(|i| !indexes.contains(i))
.collect();
}
let size: Result<u64, _> = deduped_sig.sig.indexes.len().try_into();
if let Ok(size) = size {
if dedup_sigs.contains(&deduped_sig) {
panic!("Should not reach!");
}
dedup_sigs.insert(deduped_sig);
count += size;
if count >= params.k {
return Ok(dedup_sigs.into_iter().collect());
}
}
}
Err(AggregationError::NotEnoughSignatures(count, params.k))
}
/// Collect and return `Vec<Signature>, Vec<VerificationKey>` which will be used
/// by the aggregate verification.
fn collect_sigs_vks(sig_reg_list: &[StmSigRegParty]) -> (Vec<Signature>, Vec<VerificationKey>) {
let sigs = sig_reg_list
.iter()
.map(|sig_reg| sig_reg.sig.sigma)
.collect::<Vec<Signature>>();
let vks = sig_reg_list
.iter()
.map(|sig_reg| sig_reg.reg_party.0)
.collect::<Vec<VerificationKey>>();
(sigs, vks)
}
/// Core verification
///
/// Verify a list of signatures with respect to given message with given parameters.
pub fn verify(
&self,
signatures: &[StmSig],
parameters: &StmParameters,
msg: &[u8],
) -> Result<(), CoreVerifierError> {
let sig_reg_list = signatures
.iter()
.map(|sig| StmSigRegParty {
sig: sig.clone(),
reg_party: self.eligible_parties[sig.signer_index as usize],
})
.collect::<Vec<StmSigRegParty>>();
let unique_sigs =
Self::dedup_sigs_for_indices(&self.total_stake, parameters, msg, &sig_reg_list)?;
Self::preliminary_verify(&self.total_stake, &unique_sigs, parameters, msg)?;
let (sigs, vks) = Self::collect_sigs_vks(&unique_sigs);
Signature::verify_aggregate(msg.to_vec().as_slice(), &vks, &sigs)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::key_reg::*;
use crate::merkle_tree::BatchPath;
use bincode;
use blake2::{digest::consts::U32, Blake2b};
use proptest::collection::{hash_map, vec};
use proptest::prelude::*;
use proptest::test_runner::{RngAlgorithm::ChaCha, TestRng};
use std::collections::{HashMap, HashSet};
use rand_chacha::ChaCha20Rng;
use rand_core::SeedableRng;
type Sig = StmAggrSig<D>;
type D = Blake2b<U32>;
fn setup_equal_parties(params: StmParameters, nparties: usize) -> Vec<StmSigner<D>> {
let stake = vec![1; nparties];
setup_parties(params, stake)
}
fn setup_parties(params: StmParameters, stake: Vec<Stake>) -> Vec<StmSigner<D>> {
let mut kr = KeyReg::init();
let mut trng = TestRng::deterministic_rng(ChaCha);
let mut rng = ChaCha20Rng::from_seed(trng.gen());
#[allow(clippy::needless_collect)]
let ps = stake
.into_iter()
.map(|stake| {
let p = StmInitializer::setup(params, stake, &mut rng);
kr.register(stake, p.pk).unwrap();
p
})
.collect::<Vec<_>>();
let closed_reg = kr.close();
ps.into_iter()
.map(|p| p.new_signer(closed_reg.clone()).unwrap())
.collect()
}
/// Generate a vector of stakes that should sum to `honest_stake`
/// when ignoring the indices in `adversaries`
fn arb_honest_for_adversaries(
num_parties: usize,
honest_stake: Stake,
adversaries: HashMap<usize, Stake>,
) -> impl Strategy<Value = Vec<Stake>> {
vec(1..honest_stake, num_parties).prop_map(move |parties| {
let honest_sum = parties.iter().enumerate().fold(0, |acc, (i, s)| {
if !adversaries.contains_key(&i) {
acc + s
} else {
acc
}
});
parties
.iter()
.enumerate()
.map(|(i, s)| {
if let Some(a) = adversaries.get(&i) {
*a
} else {
(*s * honest_stake) / honest_sum
}
})
.collect()
})
}
/// Generate a vector of `num_parties` stakes summing to `num_parties * total_stake`,
/// plus a subset S of 0..num_parties such that the sum of the stakes at indices
/// in S is adversary_stake * N
fn arb_parties_with_adversaries(
num_parties: usize,
num_adversaries: usize,
total_stake: Stake,
adversary_stake: Stake,
) -> impl Strategy<Value = (HashSet<usize>, Vec<Stake>)> {
hash_map(0..num_parties, 1..total_stake, num_adversaries).prop_flat_map(
move |adversaries| {
let adversary_sum: Stake = adversaries.values().sum();
let adversaries_normed = adversaries
.iter()
.map(|(a, stake)| (*a, (stake * adversary_stake) / adversary_sum))
.collect();
let adversaries = adversaries.into_keys().collect();
(
Just(adversaries),
arb_honest_for_adversaries(
num_parties,
total_stake - adversary_stake,
adversaries_normed,
),
)
},
)
}
fn find_signatures(msg: &[u8], ps: &[StmSigner<D>], is: &[usize]) -> Vec<StmSig> {
let mut sigs = Vec::new();
for i in is {
if let Some(sig) = ps[*i].sign(msg) {
sigs.push(sig);
}
}
sigs
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
/// Test that `dedup_sigs_for_indices` only takes valid signatures.
fn test_dedup(msg in any::<[u8; 16]>()) {
let false_msg = [1u8; 20];
let params = StmParameters { m: 1, k: 1, phi_f: 1.0 };
let ps = setup_equal_parties(params, 1);
let clerk = StmClerk::from_signer(&ps[0]);
let avk = clerk.compute_avk();
let mut sigs = Vec::with_capacity(2);
if let Some(sig) = ps[0].sign(&false_msg) {
sigs.push(sig);
}
if let Some(sig) = ps[0].sign(&msg) {
sigs.push(sig);
}
let sig_reg_list = sigs
.iter()
.map(|sig| StmSigRegParty {
sig: sig.clone(),
reg_party: clerk.closed_reg.reg_parties[sig.signer_index as usize],
})
.collect::<Vec<StmSigRegParty>>();
let msgp = avk.mt_commitment.concat_with_msg(&msg);
let dedup_result = CoreVerifier::dedup_sigs_for_indices(
&clerk.closed_reg.total_stake,
¶ms,
&msgp,
&sig_reg_list,
);
assert!(dedup_result.is_ok(), "dedup failure {dedup_result:?}");
for passed_sigs in dedup_result.unwrap() {
let verify_result = passed_sigs.sig.verify(¶ms, &ps[0].vk, &ps[0].stake, &avk, &msg);
assert!(verify_result.is_ok(), "verify {verify_result:?}");
}
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
/// Test that when a quorum is found, the aggregate signature can be verified by anyone with
/// access to the avk and the parameters.
fn test_aggregate_sig(nparties in 2_usize..30,
m in 10_u64..20,
k in 1_u64..5,
msg in any::<[u8;16]>()) {
let params = StmParameters { m, k, phi_f: 0.2 };
let ps = setup_equal_parties(params, nparties);
let clerk = StmClerk::from_signer(&ps[0]);
let all_ps: Vec<usize> = (0..nparties).collect();
let sigs = find_signatures(&msg, &ps, &all_ps);
let msig = clerk.aggregate(&sigs, &msg);
match msig {
Ok(aggr) => {
let verify_result = aggr.verify(&msg, &clerk.compute_avk(), ¶ms);
assert!(verify_result.is_ok(), "Verification failed: {verify_result:?}");
}
Err(AggregationError::NotEnoughSignatures(n, k)) =>
assert!(n < params.k || k == params.k),
Err(AggregationError::UsizeConversionInvalid) =>
unreachable!()
}
}
#[test]
/// Test that batch verification of certificates works
fn batch_verify(nparties in 2_usize..30,
m in 10_u64..20,
k in 1_u64..5,
seed in any::<[u8;32]>(),
batch_size in 2..10,
) {
let mut rng = ChaCha20Rng::from_seed(seed);
let mut aggr_avks = Vec::new();
let mut aggr_stms = Vec::new();
let mut batch_msgs = Vec::new();
let mut batch_params = Vec::new();
for _ in 0..batch_size {
let mut msg = [0u8; 32];
rng.fill_bytes(&mut msg);
let params = StmParameters { m, k, phi_f: 0.8 };
let ps = setup_equal_parties(params, nparties);
let clerk = StmClerk::from_signer(&ps[0]);
let all_ps: Vec<usize> = (0..nparties).collect();
let sigs = find_signatures(&msg, &ps, &all_ps);
let msig = clerk.aggregate(&sigs, &msg);
match msig {
Ok(aggr) => {
aggr_avks.push(clerk.compute_avk());
aggr_stms.push(aggr);
batch_msgs.push(msg.to_vec());
batch_params.push(params);
}
Err(AggregationError::NotEnoughSignatures(_n, _k)) => {
assert!(sigs.len() < params.k as usize)
}
Err(AggregationError::UsizeConversionInvalid) => unreachable!(),
}
}
assert!(StmAggrSig::batch_verify(&aggr_stms, &batch_msgs, &aggr_avks, &batch_params).is_ok());
let mut msg = [0u8; 32];
rng.fill_bytes(&mut msg);
let params = StmParameters { m, k, phi_f: 0.8 };
let ps = setup_equal_parties(params, nparties);
let clerk = StmClerk::from_signer(&ps[0]);
let all_ps: Vec<usize> = (0..nparties).collect();
let sigs = find_signatures(&msg, &ps, &all_ps);
let fake_msig = clerk.aggregate(&sigs, &msg);
aggr_stms[0] = fake_msig.unwrap();
assert!(StmAggrSig::batch_verify(&aggr_stms, &batch_msgs, &aggr_avks, &batch_params).is_err());
}
}
proptest! {
#[test]
/// Test that when a party creates a signature it can be verified
fn test_sig(msg in any::<[u8;16]>()) {
let params = StmParameters { m: 1, k: 1, phi_f: 0.2 };
let ps = setup_equal_parties(params, 1);
let clerk = StmClerk::from_signer(&ps[0]);
let avk = clerk.compute_avk();
if let Some(sig) = ps[0].sign(&msg) {
assert!(sig.verify(¶ms, &ps[0].vk, &ps[0].stake, &avk, &msg).is_ok());
}
}
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
fn test_parameters_serialize_deserialize(m in any::<u64>(), k in any::<u64>(), phi_f in any::<f64>()) {
let params = StmParameters { m, k, phi_f };
let bytes = params.to_bytes();
let deserialised = StmParameters::from_bytes(&bytes);
assert!(deserialised.is_ok())
}
#[test]
fn test_initializer_serialize_deserialize(seed in any::<[u8;32]>()) {
let mut rng = ChaCha20Rng::from_seed(seed);
let params = StmParameters { m: 1, k: 1, phi_f: 1.0 };
let stake = rng.next_u64();
let initializer = StmInitializer::setup(params, stake, &mut rng);
let bytes = initializer.to_bytes();
assert!(StmInitializer::from_bytes(&bytes).is_ok());
let bytes = bincode::serialize(&initializer).unwrap();
assert!(bincode::deserialize::<StmInitializer>(&bytes).is_ok())
}
#[test]
fn test_sig_serialize_deserialize(msg in any::<[u8;16]>()) {
let params = StmParameters { m: 1, k: 1, phi_f: 0.2 };
let ps = setup_equal_parties(params, 1);
let clerk = StmClerk::from_signer(&ps[0]);
let avk = clerk.compute_avk();
if let Some(sig) = ps[0].sign(&msg) {
let bytes = sig.to_bytes();
let sig_deser = StmSig::from_bytes::<D>(&bytes).unwrap();
assert!(sig_deser.verify(¶ms, &ps[0].vk, &ps[0].stake, &avk, &msg).is_ok());
let encoded = bincode::serialize(&sig).unwrap();
let decoded: StmSig = bincode::deserialize(&encoded).unwrap();
assert!(decoded.verify(¶ms, &ps[0].vk, &ps[0].stake, &avk, &msg).is_ok());
}
}
#[test]
fn test_multisig_serialize_deserialize(nparties in 2_usize..10,
msg in any::<[u8;16]>()) {
let params = StmParameters { m: 10, k: 5, phi_f: 1.0 };
let ps = setup_equal_parties(params, nparties);
let clerk = StmClerk::from_signer(&ps[0]);
let all_ps: Vec<usize> = (0..nparties).collect();
let sigs = find_signatures(&msg, &ps, &all_ps);
let msig = clerk.aggregate(&sigs, &msg);
if let Ok(aggr) = msig {
let bytes: Vec<u8> = aggr.to_bytes();
let aggr2 = StmAggrSig::from_bytes(&bytes).unwrap();
assert!(aggr2.verify(&msg, &clerk.compute_avk(), ¶ms).is_ok());
let encoded = bincode::serialize(&aggr).unwrap();
let decoded: StmAggrSig::<D> = bincode::deserialize(&encoded).unwrap();
assert!(decoded.verify(&msg, &clerk.compute_avk(), ¶ms).is_ok());
}
}
}
/// Pick N between min and max, and then
/// generate a vector of N stakes summing to N * tstake,
/// plus a subset S of 0..N such that the sum of the stakes at indices
/// in S is astake * N
fn arb_parties_adversary_stake(
min: usize,
max: usize,
tstake: Stake,
astake: Stake,
) -> impl Strategy<Value = (HashSet<usize>, Vec<Stake>)> {
(min..max)
.prop_flat_map(|n| (Just(n), 1..=n / 2))
.prop_flat_map(move |(n, nadv)| {
arb_parties_with_adversaries(n, nadv, tstake * n as Stake, astake * n as Stake)
})
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(10))]
#[test]
/// Test that when the adversaries do not hold sufficient stake, they can not form a quorum
fn test_adversary_quorum(
(adversaries, parties) in arb_parties_adversary_stake(8, 30, 16, 4),
msg in any::<[u8;16]>(),
) {
// Test sanity check:
// Check that the adversarial party has less than 40% of the total stake.
let (good, bad) = parties.iter().enumerate().fold((0,0), |(acc1, acc2), (i, st)| {
if adversaries.contains(&i) {
(acc1, acc2 + *st)
} else {
(acc1 + *st, acc2)
}
});
assert!(bad as f64 / ((good + bad) as f64) < 0.4);
let params = StmParameters { m: 2642, k: 357, phi_f: 0.2 }; // From Table 1
let ps = setup_parties(params, parties);
let sigs = find_signatures(&msg, &ps, &adversaries.into_iter().collect::<Vec<_>>());
assert!(sigs.len() < params.k as usize);
let clerk = StmClerk::from_signer(&ps[0]);
let msig = clerk.aggregate(&sigs, &msg);
match msig {
Err(AggregationError::NotEnoughSignatures(n, k)) =>
assert!(n < params.k && params.k == k),
_ =>
unreachable!(),
}
}
}
#[derive(Debug)]
struct ProofTest {
msig: Result<Sig, AggregationError>,
clerk: StmClerk<D>,
msg: [u8; 16],
}
/// Run the protocol up to aggregation. This will produce a valid aggregation of signatures.
/// The following tests mutate this aggregation so that the proof is no longer valid.
fn arb_proof_setup(max_parties: usize) -> impl Strategy<Value = ProofTest> {
any::<[u8; 16]>().prop_flat_map(move |msg| {
(2..max_parties).prop_map(move |n| {
let params = StmParameters {
m: 5,
k: 5,
phi_f: 1.0,
};
let ps = setup_equal_parties(params, n);
let clerk = StmClerk::from_signer(&ps[0]);
let all_ps: Vec<usize> = (0..n).collect();
let sigs = find_signatures(&msg, &ps, &all_ps);
let msig = clerk.aggregate(&sigs, &msg);
ProofTest { msig, clerk, msg }
})
})
}
fn with_proof_mod<F>(mut tc: ProofTest, f: F)
where
F: Fn(&mut Sig, &mut StmClerk<D>, &mut [u8; 16]),
{
match tc.msig {
Ok(mut aggr) => {
f(&mut aggr, &mut tc.clerk, &mut tc.msg);
assert!(aggr
.verify(&tc.msg, &tc.clerk.compute_avk(), &tc.clerk.params)
.is_err())
}
Err(e) => unreachable!("Reached an unexpected error: {:?}", e),
}
}
proptest! {
// Each of the tests below corresponds to falsifying a conjunct in the
// definition of a valid signature
#[test]
fn test_invalid_proof_quorum(tc in arb_proof_setup(10)) {
with_proof_mod(tc, |_aggr, clerk, _msg| {
clerk.params.k += 7;
})
}
// todo: fn test_invalid_proof_individual_sig
#[test]
fn test_invalid_proof_index_bound(tc in arb_proof_setup(10)) {
with_proof_mod(tc, |_aggr, clerk, _msg| {
clerk.params.m = 1;
})
}
#[test]
fn test_invalid_proof_index_unique(tc in arb_proof_setup(10)) {
with_proof_mod(tc, |aggr, clerk, _msg| {
for sig_reg in aggr.signatures.iter_mut() {
for index in sig_reg.sig.indexes.iter_mut() {
*index %= clerk.params.k - 1
}
}
})
}
#[test]
fn test_invalid_proof_path(tc in arb_proof_setup(10)) {
with_proof_mod(tc, |aggr, _, _msg| {
let p = aggr.batch_proof.clone();
let mut index_list = p.indices.clone();
let values = p.values;
let batch_proof = {
index_list[0] += 1;
BatchPath {
values,
indices: index_list,
hasher: Default::default()
}
};
aggr.batch_proof = batch_proof;
})
}
}
//------------------------------------------------//
//----------------- Core Verifier -----------------//
//------------------------------------------------//
fn setup_equal_core_parties(
params: StmParameters,
nparties: usize,
) -> (Vec<StmInitializer>, Vec<(VerificationKey, Stake)>) {
let stake = vec![1; nparties];
setup_core_parties(params, stake)
}
fn setup_core_parties(
params: StmParameters,
stake: Vec<Stake>,
) -> (Vec<StmInitializer>, Vec<(VerificationKey, Stake)>) {
let mut trng = TestRng::deterministic_rng(ChaCha);
let mut rng = ChaCha20Rng::from_seed(trng.gen());
let ps = stake
.into_iter()
.map(|stake| StmInitializer::setup(params, stake, &mut rng))
.collect::<Vec<StmInitializer>>();
let public_signers = ps
.iter()
.map(|s| (s.pk.vk, s.stake))
.collect::<Vec<(VerificationKey, Stake)>>();
(ps, public_signers)
}
fn find_core_signatures(
msg: &[u8],
ps: &[StmSigner<D>],
total_stake: Stake,
is: &[usize],
) -> Vec<StmSig> {
let mut sigs = Vec::new();
for i in is {
if let Some(sig) = ps[*i].core_sign(msg, total_stake) {
sigs.push(sig);
}
}
sigs
}
proptest! {
#![proptest_config(ProptestConfig::with_cases(50))]
#[test]
fn test_core_verifier(nparties in 2_usize..30,
m in 10_u64..20,
k in 1_u64..5,
msg in any::<[u8;16]>()) {
let params = StmParameters { m, k, phi_f: 0.2 };
let (initializers, public_signers) = setup_equal_core_parties(params, nparties);
let all_ps: Vec<usize> = (0..nparties).collect();
let core_verifier = CoreVerifier::setup(&public_signers);
let signers = initializers
.into_iter()
.filter_map(|s| s.new_core_signer(&core_verifier.eligible_parties))
.collect::<Vec<StmSigner<D>>>();
let signatures = find_core_signatures(&msg, &signers, core_verifier.total_stake, &all_ps);
let verify_result = core_verifier.verify(&signatures, ¶ms, &msg);
match verify_result{
Ok(_) => {
assert!(verify_result.is_ok(), "Verification failed: {verify_result:?}");
}
Err(CoreVerifierError::NoQuorum(nr_indices, _k)) => {
assert!((nr_indices) < params.k);
}
Err(CoreVerifierError::IndexNotUnique) => unreachable!(),
_ => unreachable!(),
}
}
#[test]
fn test_total_stake_core_verifier(nparties in 2_usize..30,
m in 10_u64..20,
k in 1_u64..5,) {
let params = StmParameters { m, k, phi_f: 0.2 };
let (_initializers, public_signers) = setup_equal_core_parties(params, nparties);
let core_verifier = CoreVerifier::setup(&public_signers);
assert_eq!(nparties as u64, core_verifier.total_stake, "Total stake expected: {}, got: {}.", nparties, core_verifier.total_stake);
}
}
}